

Unit 1 – Vulnerability Assessment and Penetration Testing (VAPT)

1. Introduction to Ethics of Ethical Hacking

What is Ethical Hacking?

Ethical hacking is the legal practice of testing computer systems, networks, or applications to

find security weaknesses before malicious hackers exploit them.

An ethical hacker:

• Works with permission

• Follows legal boundaries

• Reports vulnerabilities responsibly

Types of Hackers

Type Description

White Hat Ethical hacker (security professional)

Black Hat Malicious hacker (criminal)

Gray Hat Between white & black (may break rules without intent to harm)

2. Why You Need to Understand Your Enemy’s Tactics

To defend a system, you must think like an attacker.

Common Attacker Tactics

1. Reconnaissance – Collecting information (IP, domain, emails)

2. Scanning – Finding open ports & services

3. Gaining Access – Exploiting vulnerabilities

4. Maintaining Access – Installing backdoors

5. Covering Tracks – Deleting logs

Why it matters:

• Helps predict attack paths

• Improves system design

• Enables proactive security

3. Recognizing the Gray Areas in Security

Gray areas are actions that are:

• Technically illegal

• But done for learning or awareness

Examples:

• Testing a website without permission

• Scanning a network that isn’t yours

• Using leaked tools for practice

 Even if intention is good, without authorization it is illegal.

4. Vulnerability Assessment (VA)

Definition:

Vulnerability Assessment is the process of identifying, analyzing, and prioritizing security

weaknesses in a system.

Goals:

• Find known vulnerabilities

• Rank them by severity

• Suggest fixes

Types of VA:

1. Network-based VA

2. Host-based VA

3. Application VA

4. Wireless VA

VA Process:

1. Asset identification

2. Vulnerability scanning

3. Risk analysis

4. Reporting

5. Remediation

Tools:

• Nessus

• OpenVAS

• Qualys

• Nexpose

5. Penetration Testing (PT)

Definition:

Penetration Testing is a simulated cyber attack to actually exploit vulnerabilities and test real-

world security.

Difference: VA vs PT

Vulnerability Assessment Penetration Testing

Finds vulnerabilities Exploits them

Theoretical Practical

Automated Manual + automated

Less risky Higher risk

6. Penetration Testing Methodology

1. Planning & Scope

2. Information Gathering

3. Threat Modeling

4. Exploitation

5. Post-Exploitation

6. Reporting

7. Social Engineering Attacks

Definition:

Social Engineering is the psychological manipulation of people to make them reveal sensitive

information.

It attacks the human, not the system.

8. How a Social Engineering Attack Works

Attack Flow:

1. Research victim

2. Build trust

3. Create urgency/fear

4. Extract information

5. Exploit access

9. Conducting a Social Engineering Attack (Steps)

1. Information Gathering

o LinkedIn, Facebook, company website

2. Pretexting

o Creating fake identity (IT staff, bank officer)

3. Interaction

o Email, phone, in-person

4. Exploitation

o Password, OTP, USB drop

10. Common Social Engineering Attacks

a) Phishing

Fake emails asking for credentials.

b) Spear Phishing

Targeted phishing to specific person.

c) Vishing

Voice phishing (phone calls).

d) Smishing

SMS-based phishing.

e) Baiting

Infected USB drives left in office.

f) Tailgating

Following someone into secure area.

11. Preparing for Face-to-Face Attacks

Face-to-face attacks involve physical interaction.

Examples:

• Pretending to be technician

• Asking for ID card

• Shoulder surfing

Attacker Techniques:

• Professional dress

• Fake ID cards

• Confident behavior

12. Defending Against Social Engineering Attacks

Technical Controls:

• Multi-factor authentication (MFA)

• Email filters

• Intrusion detection systems

Human Controls:

• Employee training

• Security awareness programs

• Verification policies

Best Practices:

• Never share OTP

• Verify identity

• Lock systems

• Report suspicious behavior

13. Importance of VAPT in Organizations

Benefit

Prevents data breaches

Saves financial loss

Improves compliance

Builds customer trust

Enhances cyber readiness

14. Ethical Hacking Legal Framework (India Example)

In India:

• Governed by IT Act 2000

• Sections: 43, 66

• Unauthorized access is punishable

Always get:

• Written permission

• Scope document

• NDA agreement

One-Line Exam Definitions

• Ethical Hacking: Authorized security testing of systems.

• Vulnerability Assessment: Process of identifying security weaknesses.

• Penetration Testing: Simulated real-world cyber attack.

• Social Engineering: Psychological manipulation to steal data.

• Phishing: Fraudulent emails for credential theft.

• Gray Hat: Hacker operating between legal and illegal.

Short Conclusion (For Answer Writing)

Vulnerability Assessment and Penetration Testing (VAPT) form the backbone of modern

cybersecurity. While technical tools secure systems, social engineering highlights the weakest

link – humans. Ethical hacking ensures organizations stay ahead of cyber threats by proactively

identifying and fixing vulnerabilities before attackers exploit them.

Unit – 2: Physical Penetration Attacks & Insider Attacks

1. Physical Penetration Attacks

What is Physical Penetration?

Physical penetration refers to gaining unauthorized physical access to a building, server room,

or secure area in order to steal data, install malware, or sabotage systems.

Unlike cyber attacks, these attacks target physical security controls.

2. Need of Physical Penetration Testing

Organizations focus mostly on cyber security, but physical security is equally important

because:

Why it is needed:

1. To test real-world security

2. To identify human weaknesses

3. To check entry control systems

4. To prevent data theft and sabotage

5. To ensure compliance (ISO 27001, SOC2)

Example:

If an attacker can enter a server room, they can:

• Plug a USB malware

• Reset BIOS passwords

• Steal hard disks

3. Conducting a Physical Penetration Test

Step-by-Step Process:

1. Planning & Authorization

• Written permission from management

• Define scope (which building/areas)

2. Reconnaissance

• Study office timings

• Observe guards

• Identify camera positions

3. Entry Attempts

• Tailgating

• Fake ID

• Pretending to be vendor

4. Exploitation

• Plug malicious USB

• Photograph documents

• Access unlocked systems

5. Exit & Reporting

• Document all weaknesses

• Suggest improvements

4. Common Ways into a Building

a) Tailgating

Following an employee into secure area.

b) Piggybacking

Convincing someone to hold door.

c) Fake Identity

Pretending to be:

• IT staff

• Electrician

• Courier

d) Unlocked Doors

Using emergency exits.

e) Dumpster Diving

Finding sensitive info in trash.

f) Badge Cloning

Copying RFID cards.

5. Defending Against Physical Penetration

Physical Controls:

• Biometric access

• Turnstiles

• Mantraps

• CCTV cameras

Administrative Controls:

• Visitor policies

• Security training

• Access logs

Human Controls:

• Do not allow tailgating

• Verify identity

• Report strangers

Insider Attacks

6. What is an Insider Attack?

An insider attack is a security breach caused by someone within the organization (employee,

contractor, intern).

These are most dangerous because insiders already have access.

7. Types of Insider Threats

Type Description

Malicious Intentionally causes harm

Negligent Makes mistakes

Compromised Account hacked

8. Conducting an Insider Attack

Common Insider Attack Methods:

a) Data Theft

Copying files to USB or cloud.

b) Privilege Abuse

Using admin rights for misuse.

c) Credential Sharing

Giving passwords to outsiders.

d) Planting Malware

Installing keyloggers or backdoors.

e) Sabotage

Deleting files or altering data.

9. Insider Attack Lifecycle

1. Access granted

2. Abuse of trust

3. Data collection

4. Exfiltration

5. Cover tracks

10. Defending Against Insider Attacks

Technical Controls:

• Least privilege principle

• User activity monitoring

• Data Loss Prevention (DLP)

• Log auditing

• Endpoint security

Administrative Controls:

• Background checks

• Separation of duties

• Regular audits

Human Controls:

• Employee awareness

• Strong exit procedures

• Whistleblower system

11. Real World Examples

Edward Snowden

Leaked NSA documents (insider threat).

Tesla Employee Case

Stole source code (2018).

12. Comparison: Physical vs Insider Attacks

Feature Physical Insider

Attacker Outsider Employee

Feature Physical Insider

Access Gained Already exists

Risk High Very high

Detection Easier Harder

One-Line Exam Definitions

• Physical Penetration: Unauthorized physical access testing.

• Insider Attack: Security breach by trusted person.

• Tailgating: Following someone into restricted area.

• Piggybacking: Convincing entry.

• DLP: Data Loss Prevention system.

Short Conclusion (Exam Use)

Physical and insider attacks highlight that cybersecurity is not just about firewalls and antivirus.

Human behavior and physical access are critical components of organizational security. Effective

defense requires a combination of technology, policies, and employee awareness.

Unit – 3: Metasploit & Managing a Penetration Test

Part A: Metasploit Framework

1. Metasploit – The Big Picture

What is Metasploit?

Metasploit is an open-source penetration testing framework used to:

• Find vulnerabilities

• Exploit systems

• Validate security flaws

• Perform real-world attack simulations

It is used by:

• Ethical hackers

• Security analysts

• Red teams

• Cybersecurity researchers

Why Metasploit is important:

• Contains 1000+ exploits

• Supports Windows, Linux, Android, web apps

• Industry standard tool (used in CEH, OSCP)

2. Getting Metasploit

Installation Options:

• Kali Linux (pre-installed)

• Ubuntu

• Windows

• macOS

Components of Metasploit:

Component Purpose

Exploit Takes advantage of vulnerability

Payload Code executed after exploit

Auxiliary Scanning, fuzzing

Encoder Obfuscates payload

NOP Padding

Component Purpose

Post Post-exploitation modules

3. Using Metasploit Console (msfconsole)

msfconsole is the main command-line interface.

Basic Commands:

• search – find exploits

• use – select exploit

• set – set target info

• run / exploit – launch attack

• sessions – manage connections

Typical Flow:

1. search vulnerability

2. use exploit

3. set RHOST

4. set payload

5. exploit

4. Exploiting Client-Side Vulnerabilities

Client-side attacks target:

• Browsers

• PDF readers

• Email clients

• Media players

Examples:

• Malicious PDF file

• Fake website

• Trojan download

Attack Flow:

1. Create malicious file

2. Send to victim

3. Victim opens file

4. Exploit triggers

5. Attacker gains access

These attacks are very effective because they exploit human behavior.

5. Meterpreter (Heart of Metasploit)

What is Meterpreter?

Meterpreter is an advanced in-memory payload that gives full control over victim system.

Features:

• File system access

• Screenshot

• Keylogger

• Webcam access

• Password dump

• Privilege escalation

Why powerful:

• Runs in memory (hard to detect)

• No files written to disk

• Bypasses antivirus

6. Penetration Testing with Meterpreter

After exploit success:

You can:

• Browse files

• Upload malware

• Capture keystrokes

• Extract credentials

• Pivot to other machines

This phase is called Post-Exploitation.

7. Automating and Scripting Metasploit

Metasploit supports automation using:

• Ruby scripts

• Resource scripts (.rc files)

Why automation is needed:

• Large networks

• Repeated testing

• Faster assessments

Benefits:

• Saves time

• Reduces human error

• Useful for red teams

8. Going Further with Metasploit

Advanced uses:

• Exploit development

• Red team operations

• IDS evasion

• Payload customization

• Integration with Nmap, Nessus

Metasploit can be used with:

• Burp Suite

• Wireshark

• Nmap

• Social engineering tools

Part B: Managing a Penetration Test

This section focuses on professional and legal execution of pentesting.

9. Planning a Penetration Test

Key elements:

• Define scope

• Identify systems

• Set objectives

• Choose testing type

Types of Testing:

Type Knowledge given

Black Box No info

White Box Full info

Gray Box Partial info

10. Structuring a Penetration Testing Agreement

This is a legal document.

Must include:

• Authorization letter

• Scope of testing

• Time window

• Allowed techniques

• Liability clauses

• NDA

Without agreement → illegal hacking

11. Execution of a Penetration Test

Phases:

1. Reconnaissance

2. Scanning

3. Exploitation

4. Post-exploitation

5. Cleanup

This is where Metasploit is mainly used.

12. Information Sharing During a Penetration Test

Why important:

• Avoid system crashes

• Inform critical findings

• Coordinate with IT team

Rules:

• Do not hide findings

• Report high-risk issues immediately

• Maintain confidentiality

13. Reporting the Results

The most important deliverable.

Report includes:

• Executive summary

• Methodology

• Vulnerabilities found

• Risk levels

• Proof of concept

• Recommendations

Types of audience:

Audience Needs

Management Business impact

Technical team Fix details

Real-World Importance

Companies like:

• Google

• Amazon

• Microsoft

• Banks

• Defense agencies

All use Metasploit-based testing.

Comparison Table

Feature Metasploit

Purpose Exploitation

Type Open source

Users Ethical hackers

Difficulty Medium to advanced

Industry relevance Very high

One-Line Exam Definitions

• Metasploit: A penetration testing framework.

• Exploit: Code that abuses vulnerability.

• Payload: Code executed on target.

• Meterpreter: Advanced control shell.

• Black box testing: No prior knowledge.

• Penetration report: Final security document.

Short Conclusion (Perfect for Exams)

Metasploit is a powerful tool that allows ethical hackers to simulate real-world cyber attacks

and validate system security. However, effective penetration testing is not only technical but

also procedural, requiring proper planning, legal authorization, execution, communication, and

professional reporting.

Unit – 4: Linux & Windows Exploits

PART A: Basic Linux Exploits

1. Stack Operations

What is a Stack?

The stack is a special memory area used to store:

• Function parameters

• Local variables

• Return addresses

It follows LIFO (Last In, First Out).

Stack Structure:

Component

Function arguments

Return address

Base pointer

Local variables

2. Buffer Overflows

Definition:

A buffer overflow occurs when more data is written into a memory buffer than it can hold,

overwriting adjacent memory.

Why dangerous?

It allows:

• Code execution

• Program crash

• Privilege escalation

3. How Buffer Overflow Works

Example:

char name[10];

gets(name); // unsafe

If user enters 50 characters → memory corruption.

4. Local Buffer Overflow Exploits

Local vs Remote:

Type Description

Local Attacker has system access

Remote Exploited over network

Local attack scenario:

• Exploit vulnerable SUID program

• Gain root shell

5. Exploit Development Process (Linux)

Steps:

1. Find vulnerable program

2. Crash it (fuzzing)

3. Identify offset

4. Inject shellcode

5. Redirect execution

6. Get shell

6. Linux Memory Layout

Segment Purpose

Stack Local variables

Heap Dynamic memory

BSS Uninitialized

Data Initialized

Text Program code

PART B: Windows Exploits

7. Compiling & Debugging Windows Programs

Tools:

• MinGW / Visual Studio

• Immunity Debugger

• OllyDbg

• WinDbg

Why debugging?

To:

• Observe crashes

• Inspect registers

• Track memory

8. Writing Windows Exploits

Basic process:

1. Crash program

2. Find EIP offset

3. Control execution

4. Inject payload

5. Bypass protections

9. Structured Exception Handling (SEH)

What is SEH?

SEH is Windows’ mechanism to handle runtime errors.

It stores:

• Exception handler address

• Pointer to next handler

SEH exploitation:

Attacker overwrites handler pointer and redirects execution.

10. Windows Memory Protections

Modern Windows uses defensive mechanisms.

a) DEP (Data Execution Prevention)

Prevents execution in data memory.

b) ASLR (Address Space Layout Randomization)

Randomizes memory addresses.

c) SEHOP

Protects SEH chain.

d) Stack Canaries

Detects stack corruption.

11. Windows Versions Protection

Version Protection

XP SP3 DEP, basic ASLR

Vista Strong ASLR

Windows 7 DEP + ASLR

Server 2008 Full protection

12. Bypassing Windows Memory Protections

Common techniques:

a) ROP (Return Oriented Programming)

Uses existing code snippets.

b) Heap spraying

Fills memory with shellcode.

c) SEH overwrite

Redirect handler.

d) Egghunting

Find payload in memory.

13. Comparison: Linux vs Windows Exploits

Feature Linux Windows

Complexity Medium High

Protections Less More

Tools GDB Immunity

Exploit style Stack-based ROP-based

14. Real-World Importance

These vulnerabilities lead to:

• Rootkits

• Ransomware

• Zero-day exploits

Famous attacks:

• WannaCry (Windows exploit)

• Dirty COW (Linux exploit)

One-Line Exam Definitions

• Stack: LIFO memory region

• Buffer overflow: Memory overwrite vulnerability

• Shellcode: Malicious machine code

• SEH: Windows error handler

• DEP: Blocks execution in data

• ASLR: Randomizes memory layout

• ROP: Code reuse attack

Short Conclusion (Perfect for Exams)

Linux and Windows exploits demonstrate how poor memory handling can lead to full system

compromise. While Linux exploits mainly rely on stack-based vulnerabilities, Windows systems

require advanced techniques to bypass modern memory protections such as DEP and ASLR.

Understanding exploit development is essential for building secure software and effective

defenses.

Unit – 5: Web Application Security & Vulnerability Analysis

PART A: Web Application Security Vulnerabilities

1. Overview of Top Web Application Security Vulnerabilities

Most web attacks are classified by OWASP (Open Web Application Security Project).

OWASP Top 10 (Simplified List)

1. Injection

2. Broken Authentication

3. Sensitive Data Exposure

4. XML External Entities (XXE)

5. Broken Access Control

6. Security Misconfiguration

7. Cross-Site Scripting (XSS)

8. Insecure Deserialization

9. Using Components with Known Vulnerabilities

10. Insufficient Logging & Monitoring

These represent the most critical web risks globally.

2. Injection Vulnerabilities

Definition:

Injection occurs when untrusted input is sent to an interpreter (SQL, OS, LDAP) and executed as

code.

Types:

• SQL Injection

• Command Injection

• LDAP Injection

• XML Injection

Example:

SELECT * FROM users WHERE id='1 OR 1=1';

This returns all users.

3. SQL Injection Vulnerabilities

What is SQL Injection?

SQL Injection allows attackers to manipulate database queries.

Impact:

• View private data

• Modify records

• Delete tables

• Bypass login

Types:

Type Description

In-band Same channel

Blind No direct output

Out-of-band Using DNS/HTTP

4. Cross-Site Scripting (XSS)

Definition:

XSS allows attackers to inject malicious JavaScript into web pages viewed by others.

Types:

Type Description

Stored Saved in database

Reflected From URL

Type Description

DOM-based Client-side

Example:

<script>alert('Hacked')</script>

5. Impact of XSS

• Session hijacking

• Cookie theft

• Defacing website

• Phishing

6. The Rest of OWASP Top Ten (Important Ones)

Broken Authentication

Weak passwords, session flaws.

Sensitive Data Exposure

Unencrypted passwords.

Security Misconfiguration

Default credentials, open admin panels.

Broken Access Control

Users access admin pages.

Insecure Deserialization

Malicious objects executed.

PART B: Vulnerability Analysis

7. What is Vulnerability Analysis?

Vulnerability analysis is the process of identifying weaknesses in applications before

exploitation.

8. Passive Analysis

Passive analysis means no interaction with live system.

Advantages:

• Safe

• Legal

• No system damage

9. Source Code Analysis

What is it?

Reviewing program source code for flaws.

Finds:

• Hardcoded passwords

• Input validation issues

• Logic errors

Tools:

• SonarQube

• Checkmarx

• Fortify

10. Binary Analysis

What is it?

Analyzing compiled programs without source code.

Techniques:

• Static analysis

• Disassembly

• Reverse engineering

Tools:

• IDA Pro

• Ghidra

• Radare2

11. Comparison: Source vs Binary Analysis

Feature Source Code Binary

Access Full Limited

Difficulty Low High

Accuracy High Medium

Use case Developers Security teams

12. Real-World Attacks

Attack Vulnerability

Facebook data leak XSS

Sony hack SQL injection

British Airways breach Web misconfig

One-Line Exam Definitions

• OWASP: Global web security organization

• Injection: Executing attacker input

• SQLi: Database manipulation

• XSS: JavaScript injection

• Passive analysis: No system interaction

• Binary analysis: Reverse engineering

Short Conclusion (Exam Ready)

Web applications are the primary target of cyber attacks today. Vulnerabilities like SQL injection

and XSS allow attackers to compromise entire systems. Passive vulnerability analysis through

source code and binary inspection helps identify flaws early and prevents costly breaches.

Client-Side Browser Exploits & Malware Analysis

PART A: Client-Side Browser Exploits

1. Why Client-Side Vulnerabilities are Interesting

Definition:

Client-side vulnerabilities exist in user applications like:

• Web browsers

• PDF readers

• Media players

• Email clients

Instead of attacking servers, attackers attack users directly.

Why attackers prefer them:

1. Easier than server hacking

2. Users are less protected

3. Bypasses firewalls

4. Targets humans, not machines

5. Works through social engineering

Example:

User clicks malicious link → browser exploited → malware installed.

2. Internet Explorer Security Concepts

Internet Explorer (IE) was heavily targeted due to:

Key Security Features:

Feature Purpose

Protected Mode Runs in low privilege

Security Zones Different trust levels

ActiveX controls Runs external code

DEP Prevents execution

ASLR Random memory

IE Security Zones:

1. Internet (untrusted)

2. Local Intranet

3. Trusted sites

4. Restricted sites

Each zone has different permissions.

3. History of Client-Side Exploits & Latest Trends

Early Exploits:

• Buffer overflows in IE6

• Flash player bugs

• Java vulnerabilities

Modern Exploits:

• Zero-day vulnerabilities

• Drive-by downloads

• Malvertising

• Browser sandbox escapes

Latest Trends:

• Fileless malware

• Exploit kits (Angler, RIG)

• Chrome/Edge sandbox bypass

• Supply chain attacks

4. Finding New Browser-Based Vulnerabilities

This is called vulnerability research.

Methods:

1. Fuzzing (sending random input)

2. Source code review

3. Reverse engineering

4. Bug bounty programs

Tools:

• Burp Suite

• AFL fuzzer

• Ghidra

• IDA Pro

5. Heap Spray to Exploit

What is Heap Spray?

Heap spraying fills memory with malicious payload repeatedly to increase success rate.

Why used?

Because modern systems use:

• ASLR (random memory)

Heap spray makes payload land somewhere predictable.

Attack flow:

1. Load JavaScript

2. Allocate memory repeatedly

3. Insert shellcode

4. Trigger vulnerability

6. Protecting Yourself from Client-Side Exploits

Technical Protection:

• Keep browser updated

• Disable unnecessary plugins

• Use sandbox mode

• Enable DEP & ASLR

• Use ad blockers

Human Protection:

• Don’t click unknown links

• Avoid pirated software

• Use secure browsers

• Awareness training

PART B: Malware Analysis

7. What is Malware?

Malware is malicious software designed to harm, spy, or control systems.

Types:

Type Purpose

Virus Infects files

Worm Spreads automatically

Trojan Fake legitimate software

Ransomware Encrypts data

Spyware Steals data

Rootkit Hides presence

Botnet Controlled remotely

8. Collecting Malware & Initial Analysis

Sources:

• Honeypots

• Spam emails

• Infected websites

• Threat intelligence feeds

Goals:

• Understand behavior

• Identify attack method

• Develop detection rules

9. Honeynet Technology (Latest Trends)

What is Honeynet?

A honeynet is a network of vulnerable systems designed to attract attackers.

Purpose:

• Trap malware

• Study attacks

• Collect samples

• Improve defenses

Latest Trends:

• Cloud honeynets

• AI-based honeypots

• IoT honeypots

• Automated malware capture

10. Catching Malware – Setting the Trap

Methods:

1. Fake services

2. Open ports

3. Vulnerable websites

4. Email traps

When attacker hits → malware captured.

11. Initial Analysis of Malware

This is also called triage analysis.

Static Analysis:

Without running malware:

• File hash

• Strings analysis

• PE header inspection

Dynamic Analysis:

Running in sandbox:

• Process behavior

• Network connections

• File changes

• Registry edits

Tools:

• VirusTotal

• Cuckoo Sandbox

• Procmon

• Wireshark

• Hybrid Analysis

Comparison Table

Topic Client Exploits Malware

Target Browser System

Method Exploit bug Malicious code

Goal Initial access Persistence

Defense Patching Antivirus/EDR

One-Line Exam Definitions

• Client-side exploit: Attack on user software

• Heap spray: Memory flooding technique

• Honeynet: Trap network for attackers

• Malware: Harmful software

• Static analysis: No execution

• Dynamic analysis: Execute in sandbox

Short Conclusion (Exam Perfect)

Client-side browser exploits demonstrate how attackers compromise systems by exploiting

software used daily by users. Malware analysis allows security professionals to study malicious

code in controlled environments to understand behavior and improve defense mechanisms.

Together, they form the backbone of modern cyber threat research and incident response.

