

UNIT-1.0 (7 Hours) – Introduction to Graphs

1. What is a Graph

A **graph** is a mathematical structure used to represent relationships between objects. It is defined as $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ where:

- $\mathbf{V} \rightarrow$ set of vertices (nodes)
- $\mathbf{E} \rightarrow$ set of edges (connections)

Example: Social networks, computer networks, road maps.

2. Applications of Graphs

Graphs are widely used in:

- Computer networks (routing)
 - Operating systems (deadlock detection)
 - Social media (friend connections)
 - Web page ranking (Google PageRank)
 - Transportation networks
 - Circuit design
-

3. Finite and Infinite Graphs

- **Finite Graph:** Limited number of vertices and edges
Example: Graph with 5 vertices
 - **Infinite Graph:** Infinite vertices or edges
Example: Number line graph
-

4. Incidence and Degree

- **Incidence:** An edge is incident on a vertex if it connects to it.
 - **Degree of a Vertex:** Number of edges incident on it
 - Loop contributes **2** to degree
-

5. Isolated Vertex, Pendant Vertex, Null Graph

- **Isolated Vertex:** Degree = 0
- **Pendant Vertex:** Degree = 1
- **Null Graph:** Graph with vertices but **no edges**

6. Walks, Paths, and Circuits

- **Walk:** Sequence of vertices and edges (repetition allowed)
 - **Path:** Walk with no repeated vertices
 - **Circuit (Cycle):** Closed path (start = end)
-

7. Connected and Disconnected Graphs

- **Connected Graph:** Path exists between every pair of vertices
 - **Disconnected Graph:** At least one pair has no path
 - **Components:** Maximal connected subgraphs
-

8. Isomorphism of Graphs

Two graphs are **isomorphic** if:

- Same number of vertices
- Same number of edges
- Same adjacency structure

Used to identify structurally identical graphs.

9. Subgraphs

A **subgraph** is formed by selecting:

- A subset of vertices
 - A subset of edges from the original graph
-

10. Euler Graphs

A graph is **Eulerian** if:

- It is connected
- All vertices have **even degree**

Euler Path: Uses every edge exactly once

Euler Circuit: Euler path that starts and ends at the same vertex

11. Operations on Graphs

Includes:

- Union
 - Intersection
 - Complement
 - Deletion and contraction
-

12. Hamiltonian Paths and Circuits

- **Hamiltonian Path:** Visits every vertex exactly once
 - **Hamiltonian Circuit:** Closed Hamiltonian path
-

13. Traveling Salesman Problem (TSP)

Find the **shortest Hamiltonian circuit** visiting each city once.

- NP-Hard problem
 - Applications in logistics and routing
-

UNIT-2.0 (7 Hours) – Trees and Spanning Trees

1. Trees

A **tree** is a connected graph with **no cycles**.

Properties:

- If n vertices $\rightarrow n-1$ edges
 - Exactly one path between any two vertices
-

2. Pendant Vertices in a Tree

Vertices with **degree 1** are pendant (leaf nodes).

3. Distance and Center of a Tree

- **Distance:** Number of edges between vertices
 - **Eccentricity:** Maximum distance from a vertex
 - **Center:** Vertex with minimum eccentricity
-

4. Rooted and Binary Trees

- **Rooted Tree:** One vertex is designated as root
- **Binary Tree:** Each node has at most two children

Used in data structures and algorithms.

5. Counting Trees

Number of labeled trees with n vertices:

Cayley's Formula

$$n^{n-2}$$

6. Spanning Trees

A **spanning tree** includes:

- All vertices
 - Minimum edges ($n-1$)
 - No cycles
-

7. Fundamental Circuits

Adding one non-tree edge to a spanning tree forms a **fundamental circuit**.

8. Spanning Trees in Weighted Graphs

Find minimum cost spanning tree using:

- **Kruskal's Algorithm**
 - **Prim's Algorithm**
-

UNIT-3.0 (7 Hours) – Cut Sets and Connectivity

1. Cut Set

A **cut set** is a set of edges whose removal disconnects the graph.

2. Cut Vertices

A vertex whose removal increases number of components.

3. Fundamental Cut Sets

Associated with spanning trees.

4. Connectivity and Separability

- **Connected graph** → No separation
 - **Separable graph** → Has cut vertex
-

5. Network Flows

Deals with:

- Flow capacity
- Maximum flow (Ford–Fulkerson algorithm)

Used in traffic and data networks.

6. 1-Isomorphism and 2-Isomorphism

- **1-Isomorphism**: Based on cut vertices
 - **2-Isomorphism**: Based on edge connectivity
-

UNIT-4.0 (7 Hours) – Planar and Dual Graphs

1. Planar Graph

A graph that can be drawn without edge crossings.

2. Kuratowski's Theorem

A graph is non-planar if it contains:

- K_5
 - $K_{3,3}$
-

3. Detection of Planarity

Using Euler's formula:

$$V - E + F = 2$$

4. Dual Graphs

- **Geometric Dual:** Faces \rightarrow vertices
 - **Combinatorial Dual:** Based on incidence
-

5. Thickness and Crossings

- **Thickness:** Minimum planar layers
 - **Crossing Number:** Minimum edge crossings
-

UNIT-5.0 (7 Hours) – Matrix Representation of Graphs

1. Incidence Matrix

Rows \rightarrow vertices

Columns \rightarrow edges

2. Circuit Matrix

Represents cycles in graph.

3. Fundamental Circuit Matrix

Derived from spanning tree circuits.

4. Cut-Set Matrix

Represents minimal cut sets.

5. Path Matrix

Represents paths between vertices.

6. Adjacency Matrix

- Square matrix
 - $A[i][j] = 1$ if edge exists
-

UNIT-6.0 (7 Hours) – Coloring and Covering

1. Graph Coloring

Assign colors so that adjacent vertices have different colors.

2. Chromatic Number

Minimum number of colors needed.

3. Chromatic Polynomial

Gives number of colorings as a function of colors.

4. Coverings

- Vertex covering
 - Edge covering
-

5. Four Color Problem

Every planar graph can be colored using **at most 4 colors**.