Engineerfram.in

UNIT-1: Introduction & Analysis of Algorithms
Algorithm

An algorithm is a finite sequence of well-defined steps used to solve a problem.

Characteristics of an Algorithm

Input — Takes zero or more inputs.

Output - Produces at least one output.

Definiteness — Each step is clear and unambiguous.
Finiteness — Terminates after a finite number of steps.
Effectiveness — Each step is basic and feasible.
Generality — Applicable to a class of problems.

IR

Analysis of Algorithm

Algorithm analysis determines efficiency in terms of time and space.
Asymptotic Analysis

Used to analyze algorithm behavior for large input sizes (n).

Complexity Bounds

1. Big-0O (O)-Upper bound (Worst case)
2. Big-Q (Q)-Lower bound (Best case)
3. Big-0 (0)-Tight bound (Average case)

Example:
Linear Search

e Bestcase: Q1)
e Worst case: O(n)
e Average case: O(n)



Best, Average, and Worst Case Analysis

e Best Case: Minimum time taken
e« Average Case: Expected time for random input
o Worst Case: Maximum time taken

Performance Measurement

1. Time Complexity — Number of operations
2. Space Complexity - Memory used

Time-Space Trade-off

An algorithm may use:

e More memory to reduce time (e.g., hashing)
e More time to save memory (e.g., brute force)

Analysis of Recursive Algorithms
Uses recurrence relations.
Substitution Method

e (Guess the solution
¢ Prove by induction

Recursion Tree Method

¢ Representrecursive calls as a tree
e Sum cost at each level

Master’s Theorem

Used for recurrences of form:



T(n) = aT(n/b) + f£(n)
Three cases:

1.
2.
3.

UNIT-2: Divide and Conquer & Heaps
Divide and Conquer Paradigm

Steps:

1. Divide problem into sub-problems
2. Conquer recursively
3. Combine results

Binary Search

e Searchin sorted array
e Time: O(logn)

Merge Sort

¢ Divide array, sort recursively, merge
e Time: O(nlogn)
e Stable sorting

Quick Sort

e Choose pivot

e Partition array

o Average: O(n logn)
e Worst: O(n?)



Linear Time Selection

Find k-th smallest element using Median of Medians

e Time: O(n)

Strassen’s Matrix Multiplication

e Reduces multiplication operations
e Time: O(n"2.81)

Karatsuba Algorithm

o Fast multiplication of large numbers
e Time: O(n"1.585)

Heap

A complete binary tree satisfying heap property.
Min Heap

e Parent < children
Max Heap

e Parent = children

Build Heap

e Convert array into heap
e Time: O(n)



Heap Sort

—

. Build heap
2. Repeatedly remove root

e Time: O(n logn)
¢ In-place sorting

UNIT-3: Algorithm Design Techniques
Brute Force

e Tryall possibilities
¢ Simple but inefficient
¢ Example: Linear search

Greedy Algorithm

¢ Make locally optimal choice
Greedy Examples

1. Minimum Cost Spanning Tree

o Prim’s Algorithm

o Kruskal’s Algorithm
2. Knapsack (Fractional)

o Choose highest profit/weight ratio
3. Job Sequencing

o Maximize profit with deadlines
4. Huffman Coding

o Optimal prefix code for compression
5. Single Source Shortest Path

o Dijkstra’s algorithm



Backtracking

e Try possible solutions
¢ Undo when constraint violated
¢ Example: N-Queens

Branch and Bound

e Optimization version of backtracking
¢ Uses bounds to prune search space

UNIT-4: Dynamic Programming & Heuristics
Dynamic Programming (DP)

Used when:

¢ Overlapping sub-problems
e Optimal substructure

DP vs Divide and Conquer

DP Divide & Conquer
Stores results No storage
Avoids recomputation Recomputes

Bottom-up Top-down

DP Applications

1. Fibonacci Series
2. Matrix Chain Multiplication
3. 0-1 Knapsack



Longest Common Subsequence (LCS)
Travelling Salesman Problem

Rod Cutting

Bin Packing

Noos

Heuristics

e Approximate solutions

e Faster than exact algorithms

e Used in NP-hard problems
Characteristics

¢ Not always optimal

¢ Problem-specific

e Efficient
Application Domains

e Scheduling

¢ Routing
e Al problems

UNIT-5: Graph & Tree Algorithms
Graph Representation

1. Adjacency Matrix
2. Adjacency List

Traversal Algorithms

DFS

o Uses stack/recursion
e Depth-wise traversal



BFS

¢ Usesqueue
e Level-wise traversal

Shortest Path Algorithms

Bellman-Ford

¢ Handles negative weights
e Time: O(VE)

Dijkstra’s Algorithm

e Greedy approach
¢ Uses priority queue
e Time: O(E logV)

Floyd-Warshall

e All-pairs shortest path
o Time: O(n%

Other Graph Algorithms

Transitive Closure

Topological Sorting

Network Flow (Ford-Fulkerson)
Connected Components

UNIT-6: NP Problems & Advanced Algorithms
Tractable vs Intractable Problems

e Tractable: Polynomial time



¢ Intractable: Exponential time

Computability

Determines whether a problem is solvable by algorithm.

Complexity Classes

P: Solvable in polynomial time

¢ NP: Verifiable in polynomial time

e NP-Complete: Hardest problems in NP

o NP-Hard: At least as hard as NP-Complete

Cook’s Theorem

e SATis NP-Complete
¢ Foundation of NP-Completeness

Standard NP-Complete Problems

e Travelling Salesman
¢ Knapsack

e Vertex Cover

o Clique

e Hamiltonian Cycle

Reduction Techniques

Transform one problem to another in polynomial time.



Approximation Algorithms

e Near-optimal solutions
e Polynomialtime

Randomized Algorithms

e Userandom numbers
e Faster on average
e Example: Randomized Quick Sort



	UNIT–1: Introduction & Analysis of Algorithms
	Algorithm
	Characteristics of an Algorithm

	Analysis of Algorithm
	Asymptotic Analysis
	Complexity Bounds

	Best, Average, and Worst Case Analysis
	Performance Measurement
	Time–Space Trade-off

	Analysis of Recursive Algorithms
	Substitution Method
	Recursion Tree Method
	Master’s Theorem


	UNIT–2: Divide and Conquer & Heaps
	Divide and Conquer Paradigm
	Binary Search
	Merge Sort
	Quick Sort
	Linear Time Selection
	Strassen’s Matrix Multiplication
	Karatsuba Algorithm

	Heap
	Min Heap
	Max Heap
	Build Heap
	Heap Sort


	UNIT–3: Algorithm Design Techniques
	Brute Force
	Greedy Algorithm
	Greedy Examples

	Backtracking
	Branch and Bound

	UNIT–4: Dynamic Programming & Heuristics
	Dynamic Programming (DP)
	DP vs Divide and Conquer
	DP Applications

	Heuristics
	Characteristics
	Application Domains


	UNIT–5: Graph & Tree Algorithms
	Graph Representation
	Traversal Algorithms
	DFS
	BFS

	Shortest Path Algorithms
	Bellman-Ford
	Dijkstra’s Algorithm
	Floyd-Warshall

	Other Graph Algorithms

	UNIT–6: NP Problems & Advanced Algorithms
	Tractable vs Intractable Problems
	Computability
	Complexity Classes
	Cook’s Theorem
	Standard NP-Complete Problems
	Reduction Techniques
	Approximation Algorithms
	Randomized Algorithms


