

UNIT-1: Introduction & Analysis of Algorithms

Algorithm

An **algorithm** is a finite sequence of well-defined steps used to solve a problem.

Characteristics of an Algorithm

1. **Input** – Takes zero or more inputs.
 2. **Output** – Produces at least one output.
 3. **Definiteness** – Each step is clear and unambiguous.
 4. **Finiteness** – Terminates after a finite number of steps.
 5. **Effectiveness** – Each step is basic and feasible.
 6. **Generality** – Applicable to a class of problems.
-

Analysis of Algorithm

Algorithm analysis determines **efficiency** in terms of **time and space**.

Asymptotic Analysis

Used to analyze algorithm behavior for **large input sizes (n)**.

Complexity Bounds

1. **Big-O (O)** – Upper bound (Worst case)
2. **Big- Ω (Ω)** – Lower bound (Best case)
3. **Big- Θ (Θ)** – Tight bound (Average case)

Example:

Linear Search

- Best case: $\Omega(1)$
 - Worst case: $O(n)$
 - Average case: $\Theta(n)$
-

Best, Average, and Worst Case Analysis

- **Best Case:** Minimum time taken
 - **Average Case:** Expected time for random input
 - **Worst Case:** Maximum time taken
-

Performance Measurement

1. **Time Complexity** – Number of operations
 2. **Space Complexity** – Memory used
-

Time–Space Trade-off

An algorithm may use:

- More memory to reduce time (e.g., hashing)
 - More time to save memory (e.g., brute force)
-

Analysis of Recursive Algorithms

Uses **recurrence relations**.

Substitution Method

- Guess the solution
- Prove by induction

Recursion Tree Method

- Represent recursive calls as a tree
- Sum cost at each level

Master's Theorem

Used for recurrences of form:

$$T(n) = aT(n/b) + f(n)$$

Three cases:

- 1.
 - 2.
 - 3.
-

UNIT-2: Divide and Conquer & Heaps

Divide and Conquer Paradigm

Steps:

1. Divide problem into sub-problems
 2. Conquer recursively
 3. Combine results
-

Binary Search

- Search in sorted array
 - Time: $O(\log n)$
-

Merge Sort

- Divide array, sort recursively, merge
 - Time: $O(n \log n)$
 - Stable sorting
-

Quick Sort

- Choose pivot
- Partition array
- Average: $O(n \log n)$
- Worst: $O(n^2)$

Linear Time Selection

Find k-th smallest element using **Median of Medians**

- Time: $O(n)$
-

Strassen's Matrix Multiplication

- Reduces multiplication operations
 - Time: $O(n^{2.81})$
-

Karatsuba Algorithm

- Fast multiplication of large numbers
 - Time: $O(n^{1.585})$
-

Heap

A **complete binary tree** satisfying heap property.

Min Heap

- Parent \leq children

Max Heap

- Parent \geq children
-

Build Heap

- Convert array into heap
- Time: $O(n)$

Heap Sort

1. Build heap
 2. Repeatedly remove root
- Time: $O(n \log n)$
 - In-place sorting
-

UNIT-3: Algorithm Design Techniques

Brute Force

- Try all possibilities
 - Simple but inefficient
 - Example: Linear search
-

Greedy Algorithm

- Make locally optimal choice

Greedy Examples

1. **Minimum Cost Spanning Tree**
 - Prim's Algorithm
 - Kruskal's Algorithm
 2. **Knapsack (Fractional)**
 - Choose highest profit/weight ratio
 3. **Job Sequencing**
 - Maximize profit with deadlines
 4. **Huffman Coding**
 - Optimal prefix code for compression
 5. **Single Source Shortest Path**
 - Dijkstra's algorithm
-

Backtracking

- Try possible solutions
 - Undo when constraint violated
 - Example: N-Queens
-

Branch and Bound

- Optimization version of backtracking
 - Uses bounds to prune search space
-

UNIT-4: Dynamic Programming & Heuristics

Dynamic Programming (DP)

Used when:

- Overlapping sub-problems
 - Optimal substructure
-

DP vs Divide and Conquer

DP	Divide & Conquer
Stores results	No storage
Avoids recomputation	Recomputes
Bottom-up	Top-down

DP Applications

1. **Fibonacci Series**
2. **Matrix Chain Multiplication**
3. **0-1 Knapsack**

-
- 4. **Longest Common Subsequence (LCS)**
 - 5. **Travelling Salesman Problem**
 - 6. **Rod Cutting**
 - 7. **Bin Packing**
-

Heuristics

- Approximate solutions
- Faster than exact algorithms
- Used in NP-hard problems

Characteristics

- Not always optimal
- Problem-specific
- Efficient

Application Domains

- Scheduling
 - Routing
 - AI problems
-

UNIT-5: Graph & Tree Algorithms

Graph Representation

- 1. **Adjacency Matrix**
 - 2. **Adjacency List**
-

Traversal Algorithms

DFS

- Uses stack/recursion
- Depth-wise traversal

BFS

- Uses queue
 - Level-wise traversal
-

Shortest Path Algorithms

Bellman-Ford

- Handles negative weights
- Time: $O(VE)$

Dijkstra's Algorithm

- Greedy approach
- Uses priority queue
- Time: $O(E \log V)$

Floyd-Warshall

- All-pairs shortest path
 - Time: $O(n^3)$
-

Other Graph Algorithms

- **Transitive Closure**
 - **Topological Sorting**
 - **Network Flow (Ford-Fulkerson)**
 - **Connected Components**
-

UNIT-6: NP Problems & Advanced Algorithms

Tractable vs Intractable Problems

- **Tractable:** Polynomial time

- **Intractable:** Exponential time
-

Computability

Determines whether a problem is solvable by algorithm.

Complexity Classes

- **P:** Solvable in polynomial time
 - **NP:** Verifiable in polynomial time
 - **NP-Complete:** Hardest problems in NP
 - **NP-Hard:** At least as hard as NP-Complete
-

Cook's Theorem

- SAT is NP-Complete
 - Foundation of NP-Completeness
-

Standard NP-Complete Problems

- Travelling Salesman
 - Knapsack
 - Vertex Cover
 - Clique
 - Hamiltonian Cycle
-

Reduction Techniques

Transform one problem to another in polynomial time.

Approximation Algorithms

- Near-optimal solutions
 - Polynomial time
-

Randomized Algorithms

- Use random numbers
- Faster on average
- Example: Randomized Quick Sort