Distributed Computing — Unit 1.0 (Detailed Notes)

Distributed Database System (DDBS)

1. What is Distributed Database System (DDBS)?

A Distributed Database System (DDBS) is a collection of logically interrelated databases that
are distributed across multiple locations but connected through a computer network.

o Datais stored at different sites (servers, nodes, data centers).
e Userscan access data as ifit is stored at a single location.
o The system manages transparency, coordination, and data consistency.

Definition

“A Distributed Database System is a database in which storage devices are not all attached to a
common processor. Data is distributed across different physical locations and managed by a
distributed DBMS.”

2. Features of Distributed Database Systems

1. Distribution Transparency
Users do not need to know where the data actually resides.
2. Replication
Copies of data may be stored at different sites to improve reliability and performance.
3. Scalability
Easy to add new sites without affecting the overall system.
4. Fault Tolerance
If one site fails, the system continues to work with replicated data.
5. Improved Performance
Local queries run faster since data is available nearby.
6. Heterogeneity Support
Systems can work with different hardware, software, or DBMS.
7. Concurrency Control
Ensures correct results even when many users access data simultaneously.
8. Security and Authorization
Access control is maintained across multiple sites.

3. Promises of DDBS (Advantages)

1. Reliability & Availability

Failure of one site does not stop the entire system.
2. Improved Performance

Local queries reduce response time.
3. Modular Growth

New sites can be added easily without downtime.
4. Lower Communication Cost

Data is stored closer to where it is used.
5. Better Sharing of Data

Departments can share distributed data easily.
6. Continuation of Service

Even during partial network failure, system keeps functioning.

4. Design Issues in Distributed Database System

Designing a DDBS is complex. Major issues include:

a) Fragmentation

Splitting a database into smaller logical units (fragments).
Types:

e Horizontal Fragmentation
e Vertical Fragmentation
e Hybrid Fragmentation

b) Replication
Maintaining multiple copies of data at different sites.
Replication Methods:

e Full Replication

e Partial Replication
¢ No Replication

c) Allocation

Deciding where to place each fragment or replica.

d) Query Processing

Optimizing distributed queries for efficiency.

e) Concurrency Control

Ensuring consistency when multiple users update distributed data.

Methods:

¢ Distributed Two-Phase Locking (2PL)
e Timestamp Ordering

f) Reliability & Fault Tolerance

Handling failures at sites, links, or network.
Techniques:

e Checkpointing
¢ Recovery Protocols

g) Data Consistency

Ensuring all replicas hold the same values after updates.
h) Security

Maintaining access control across all sites.

5. Distributed DBMS Architecture

There are three main architectures:

1. Client/Server Architecture
Description
Database is stored on one or more central servers, and clients request data.

Working

e Client > sends request
e Server > processes query and sends result

Advantages

e Simple toimplement
e Centralized control
e Better performance for small systems

Disadvantages

e Serveroverload
¢ Single point of failure

2. Peer-to-Peer (P2P) Architecture
Description
Every site (node) performs both client and server roles.

Features

¢ Equalresponsibility
¢ No central controller
e Better reliability

Advantages
e No single point of failure

e Scalable system
e Supports distributed processing

Disadvantages

e Complex concurrency control
« Difficult to maintain global data consistency

3. Multi-Database System (MDBS)

Description

Combines multiple autonomous databases into a single system.
Each site:

e Hasits own DBMS
¢ Manages its own data
¢ May follow different models (SQL, NoSQL, Oracle, etc.)

Features

¢ No central control over data
e Sites cooperate to answer global queries

Advantages

e Supports integration of different independent databases
¢ Flexible and highly scalable

Disadvantages

¢ Very complex
¢ Hard to maintain global schema
e Data conflicts may occur

Common Formula (Copy Format)

1. Data Allocation Cost Formula

Total Cost = Storage Cost + Transfer Cost + Processing Cost

2. Query Response Time

Response Time = Local Processing Time + Communication Time

3. Replication Overhead

Replication Cost = (Number of Replicas - 1) x Update Cost

4. Reliability of Distributed System

Total Reliability = 1 - (Product of individual failure probabilities)

Distributed Computing — Unit 2.0 (Detailed Notes)

Distributed Database Design (DDD)

1. Distributed Database Design Concept

Distributed Database Design is the process of structuring, fragmenting, replicating, and
allocating data across multiple sites in a distributed environment.

The main steps of distributed database design are:

Database Fragmentation

Data Allocation (Placement of fragments)
Replication (If required)

Ensuring Transparency

PoN=

Aim of Distributed Design

To design a database that is:

e Fast
o Reliable

¢ Always available
e Easytoexpand
e Cost effective

Distributed database design plays a crucial role in determining how data will be stored, accessed,
and maintained across multiple locations.

2. Objective of Data Distribution

The main objectives of distributing data are:

1. Improved Performance

o Data stored close to users reduces access time.
e Local processing is faster.

2. Reliability and Availability

o Failure of one site does not affect others.
¢ Replication increases fault tolerance.

3. Reduced Communication Cost

¢ Queries can be processed locally.
e Less data travels across the network.

4. Scalability / Growth

¢ New sites can be added easily.
5. Data Sharing

o Different departments can access relevant fragments.
6. Autonomy

e« Each site can manage its own data and workload.

3. Data Fragmentation

Fragmentation is the process of breaking a database into smaller logical pieces (fragments).
Each fragment can be stored at different sites.

Goals of Fragmentation

¢ Improve performance

e Increase availability

¢ Reduce communication cost
e Support parallelism

Types of Fragmentation

A. Horizontal Fragmentation

¢ Divides a table row-wise.
¢ Each fragment contains some rows of the table.
¢ Based on a selection condition.

Example

A “Customer” table may be split by region:

e Fragment 1> Customers in North region
e Fragment 2 » Customers in South region

Formula

R =Rl U R2 U R3
(Each fragment contains different rows)

B. Vertical Fragmentation

e Divides a table column-wise.
e Each fragment contains some columns plus the primary key (to maintain
reconstruction).

Example

Employee table split as:

¢ F1: EmplID, Name, Address
e F2: EmplD, Salary, Department

Formula

R = Rl W R2
(Join using primary key)

C. Mixed / Hybrid Fragmentation

Combination of horizontal + vertical fragmentation.

Example

First split customers by region (horizontal),
then split each fragment by columns (vertical).

Correctness Rules for Fragmentation

A fragmentation is correct if:

1. Completeness

All data must appear in some fragment.
2. Reconstruction

We must be able to rebuild the original table using fragments.
3. Disjointness

For horizontal: no overlapping rows

For vertical: only primary key overlaps.

4. Allocation of Fragments

Allocation means deciding which site will store which fragment.

Fragment allocation strategies include:

1. Centralized Allocation

All fragments stored at a single central site.

e Simple
o Not fault tolerant

2. Replicated Allocation
Fragments are stored at multiple sites.
Advantages

e High availability
o Faster local queries

Disadvantages

¢ Update costincreases

3. Partitioned Allocation

Fragments are distributed across many sites,
but without replication.

Advantages

e Low update cost
¢ Balanced load

Disadvantages

¢ If one site fails, fragment becomes unavailable

4. Mixed Allocation

Combination of:

o Some fragments replicated
e Some stored at a single site

This is the most commonly used method in real systems.

Fragment Allocation Formula (Copy Format)

Minimization of Total Allocation Cost

Total Cost = Storage Cost + Query Cost + Update Cost + Communication Cost

Query Processing Cost

Query Cost = Local Processing Cost + Remote Access Cost

5. Transparencies in Distributed Database Design

Transparency means hiding the complexity of distributed data from the users.

Main types:

1. Fragmentation Transparency

User does not know data is broken into fragments.

Example:
When user queries CUSTOMER table — system automatically collects data from all fragments.

2. Replication Transparency

User does not know multiple copies of data exist.

System decides:

¢ Which replica to read
e Which replica to update

3. Location Transparency

Users do not need to know where data is stored.

They use a global schema:

SELECT * FROM EMPLOYEE;

System fetches data from the correct site.

4. Local Mapping Transparency

Local DBMS may be different (Oracle, MySQL, SQL Server),
but user sees a unified global view.

5. Distributed Query Transparency

User writes normal SQL, system handles:

e Fragment location
e Communication
¢ Optimization

6. Transaction Transparency

Distributed transactions behave like:

¢ Asingle, unified transaction
e Evenif they run across multiple sites

Uses:

¢ 2-phase commit protocol

e Locking protocols

7. Performance Transparency

System automatically optimizes queries for:

¢ Minimum response time
e Minimum network cost

Distributed Computing — Unit 3.0 (Detailed Notes)

Distributed Transaction and Concurrency Control

1. Basic Concepts of Transaction Management

A transaction is a sequence of operations performed as a single logical unit of work.

Example:

BEGIN
Transfer 1000 from Account A
Add %1000 to Account B

END

Properties of Transaction (ACID)

Atomicity — All operations succeed or none do.

Consistency — Database remains in a valid state.

Isolation — Parallel transactions do not interfere.

Durability — Results of committed transactions are permanent.

Pob=

Why Transaction Management?

¢ To maintain correctness

¢ To avoid data loss

¢ To handle multiple users accessing same data
o Toresolve conflicts and failures

2. Objective of Distributed Transaction Management

Distributed transactions are executed across multiple sites, multiple databases, and multiple
servers.

Main objectives:

1. Ensure Global ACID Properties

All participating sites must follow ACID.

2. Coordination

Coordinate execution across sites using protocols.
3. Failure Recovery

Handle:

o Site failure

o Network failure

e Communication failure
4. Atomic Commitment

Ensure all sites either commit or rollback.

5. Global Consistency

Every site must end in a consistent state.

6. Minimize Communication Cost

Reduce the network messages during transaction execution.

3. Model for Transaction Management

A distributed transaction management model consists of:

1. Local Transaction Manager (LTM)

e Present at each site

¢ Manages local transactions

¢ Maintains local logs

¢ Handles local concurrency control

2. Global Transaction Manager (GTM)

¢ Coordinates all participating sites
o Controls global scheduling
o Ensures global ACID properties

3. Transaction Components

a. Coordinator

Initiates the transaction, communicates with all participants.

b. Participants / Cohorts

Execute transaction operations as instructed.

4. Commit Protocols
i. Two-Phase Commit Protocol (2PC)
Used to ensure atomicity.

Phase 1: Voting Phase

e Coordinator » “PREPARE to commit?”
e Participants > “YES” or “NO”

Phase 2: Decision Phase

¢ Ifallsay YES » Coordinator sends COMMIT
¢ Ifany say NO > Coordinator sends ABORT

ii. Three-Phase Commit (3PC)

Improves over 2PC by eliminating blocking during failures.

4. Distributed Concurrency Control

Concurrency control ensures that multiple transactions can run simultaneously without
conflicts.

Objectives:

1. Maintain Serializability

Execution should be equivalent to a serial order.

2. Avoid Conflicts

Avoid overlapping read/write operations that cause inconsistency.

3. Ensure Isolation

Each transaction works as if it is running alone.

4. Handle Distributed Environment Challenges

¢ Network delay
e Sitefailures
¢ Synchronization across sites

5. Concurrency Control Anomalies

If concurrency control is not used, the following problems occur:

1. Lost Update Problem

Two transactions update the same data, and one update is overwritten.
Example:

T1 reads X — T2 reads X — T2 updates X — T1 updates X
T2’s update is lost.

2. Dirty Read Problem

A transaction reads uncommitted data from another transaction.

Example:
T1 updates X but does not commit — T2 reads that updated X — T1 rolls back — T2 has read
wrong data.

3. Unrepeatable Read

A transaction reads the same data twice but gets different values.

4. Phantom Read

Query returns different sets of rows when executed twice due to updates/inserts.

6. Distributed Serializability

Distributed serializability ensures that transactions across multiple sites behave as if executed in
one global serial order.

Types of Serializability

1. Conflict Serializability
Transactions do not conflict in order.
2. View Serializability
Based on read/write views of transactions.

Global Serialization Graph (SG)

Each site has a local serialization graph.
Global SG = Union of all local SGs.

If global SG is acyclic, then schedule is serializable.

7. Locking Based Algorithms

Locking ensures transactions access data items in an exclusive or shared way.

Types of Locks

1. Shared Lock (S-lock)

Allows a transaction to read data.
Multiple shared locks allowed.

2. Exclusive Lock (X-lock)

Allows a transaction to read & write data.
Only one X-lock allowed.

Two-Phase Locking (2PL) Protocol

Ensures conflict-serializability.

Phase 1: Growing Phase

Transaction obtains locks, but cannot release any lock.

Phase 2: Shrinking Phase

Transaction releases locks, but cannot acquire new ones.

Guarantee:

Schedules will be conflict-serializable but may cause deadlocks.

Distributed Locking Algorithms
1. Centralized Lock Manager

One site manages all locks.

Advantage: Simple
Disadvantage: Single point of failure

2. Primary Copy Locking

Each data item has a primary site for lock control.

3. Distributed (Fully Decentralized) Locking

Each site manages locks for its own data.

4. Majority Consensus Locking

Transaction needs locks from majority of sites before accessing data.

Deadlock Handling
Two Methods

1. Deadlock Prevention
o Timestamp-based rules
o Wound-Wait
o Wait-Die

2. Deadlock Detection & Recovery
o Wait-for graph
o Victim selection
o Transaction rollback

Formula (Copy Format)

1. Serializability Condition

A schedule is serializable if Global Serialization Graph (SG) is acyclic.

2. Locking Rule (2PL)

Growing Phase: Acquire Locks
Shrinking Phase: Release Locks
(No overlap allowed)

3. Commit Protocol Rule

If all participants vote YES - Commit
If any participant votes NO - Abort

Distributed Computing — Unit 4.0 (Detailed Notes)

Distributed Deadlock and Recovery

1. Introduction to Deadlock

A deadlock is a situation where two or more transactions wait indefinitely for each other to
release resources, and none of them can proceed.

Example (Simple Deadlock)
Tl holds Lock on X — waits for Lock on Y
T2 holds Lock on Y — waits for Lock on X

Both transactions wait forever - DEADLOCK.

Conditions for Deadlock (All must hold)

Mutual Exclusion — Resource held by only one transaction.

Hold and Wait - A transaction holds one resource and waits for another.
No Preemption — Resources cannot be forcibly taken away.

Circular Wait - Transactions form a waiting cycle.

Pobd=

2. Distributed Deadlock

In distributed systems:

¢ Resources are stored at multiple sites

e Locks are handled by local lock managers

o Global waits occur across sites

o Deadlock detection becomes more complex

Example:

Tl at Site A waits for lock at Site B
T2 at Site B waits for lock at Site A

3. Distributed Deadlock Handling Methods

Deadlock handling in distributed systems uses three major techniques:

A. Deadlock Prevention

Deadlock is prevented by eliminating one of the four conditions.

Methods:

1. Wound-Wait Scheme

¢ Based ontimestamps

o Ifoldertransaction requests a lock held by a younger one > younger transaction is
wounded (rolled back)

e Ifyounger transaction requests lock from older one - younger waits

Advantage: No deadlock occurs

Disadvantage: Many rollbacks may occur

2. Wait-Die Scheme

¢ Alsotimestamp-based
¢ If older transaction requests lock held by younger > older waits
e Ifyoungerrequests lock held by older > younger dies (rolled back)

Both ensure no circular wait — deadlock cannot occur.

B. Deadlock Avoidance

System checks for safe state before granting a lock.

Concept:
e Transaction provides lock requirements in advance
¢ System checks if granting a lock leads to a potential deadlock
o Ifunsafe > lockis not granted

Major Techniques:

1. Resource Allocation Graph (RAG) Analysis
2. Safe State Check (similar to Banker’s algorithm)

Limitation:

¢ Requires advance knowledge of resource needs
o Difficult in distributed environment

C. Deadlock Detection

Deadlock detection is widely used in distributed systems.

System periodically checks for deadlocks using:

1. Wait-for Graph (WFG)

e Eachtransaction = node
e EdgeT1->T2 means T1waiting for T2
¢ Cyclein WFG > Deadlock

Distributed WFG

Each site keeps a local WFG.
Global WFG = Combination of all local WFGs.

Deadlock Detection Algorithms

1. Path-Pushing Algorithm

Sites send dependency paths to central site — combines to detect cycles.

2. Edge-Chasing Algorithm

Uses special messages called probes:

(PROBE, Ti, Tj, Tk)

If probe returns to origin — deadlock exists.

3. Global State Detection

Snapshot of global lock state is evaluated to see if deadlock exists.

4. Deadlock Recovery

When a deadlock is detected, it must be resolved.

Recovery Techniques

1. Transaction Rollback (Victim Selection)

Pick a transaction to abort.
Criteria;

¢ Youngest transaction
e Minimum cost rollback
¢ Least progress made

2. Partial Rollback

Rollback only the last few operations instead of full rollback.

3. Resource Preemption

Take resource away from a transaction (rare in DBMS).

5. Two-Phase Commit Protocol (2PC)

2PC ensures atomic commit across all sites.

Phase 1: Prepare / Voting Phase

Coordinator — “PREPARE to commit?”
Participants — “YES” (vote-commit) or “NO” (vote-abort)

Phase 2: Commit/ Abort Phase

If ALL vote YES — Coordinator sends COMMIT
If ANY votes NO — Coordinator sends ABORT

Properties

o Guarantees atomic commitment
e Can block if coordinator fails

6. Three-Phase Commit Protocol (3PC)

3PC improves 2PC by making the protocol non-blocking.

Phase 1: Can Commit?

Coordinator — asks participants if they can commit.

Phase 2: Pre-Commit

If all say YES — coordinator sends PRE-COMMIT message.
Participants prepare to commit but do not commit yet.

Phase 3: Do Commit

Coordinator sends COMMIT message.
Participants commit.

Advantages over 2PC

e Non-blocking
o Handles coordinator failure better
e Reduced waiting time

Comparison of 2PC vs 3PC
Feature 2PC 3PC

Phases 2 3

Blocking Yes No

Failure Handling Weak Strong

Feature 2PC 3PC
Performance Faster Slow but safe

Complexity Simple More complex

FORMULAS (Copy Format)

1. Deadlock Condition

Deadlock exists if Wait-For Graph contains a cycle.

2. Commit Protocol Rule

IF all participants vote YES — COMMIT
ELSE — ABORT

3. Circular Wait Condition
TL - T2 - T3 - ... - Tn - T1 (Deadlock)

Distributed Computing — Unit 5.0 (Detailed Notes)

Distributed Query Processing and Optimization

1. Concepts of Distributed Query Processing (DQP)

Distributed Query Processing refers to the techniques and algorithms used to execute database
queries in a distributed database system, where:

¢ Datais stored at multiple sites
¢ Network communication is required
e Local DBMS systems may differ

Goal of DQP

To process a query efficiently and return correct results with minimum cost (communication +
computation).

Major Activities

Decompose the global query

Optimize the query plan

Locate data fragments

Execute operations at appropriate sites
Assemble final result

awbh=

2. Objectives of Distributed Query Processing
1. Minimize Communication Cost

Communication is expensive in distributed systems.
Reduce:

e Data transfer
¢ Message passing
o Network traffic

2. Improve Performance

Perform operations closer to data by using:

e Local processing
e Parallelism

3. Reduce Response Time

Execute operations in parallel at multiple sites.

4. Ensure Correctness

Distributed processing should produce the same result as centralized execution.
5. Handle Heterogeneous Systems

Different sites may use:

e Different DBMS
o Different data models
o Different hardware

3. Phases of Distributed Query Processing

Distributed query processing occurs in four major phases:

Phase 1: Query Decomposition

The global query is converted into algebraic expressions.
Steps:

e Parse SQL query
o Apply query rewriting rules
o Generate algebraic representation

Example:

SELECT * FROM EMPLOYEE WHERE CITY = 'PATNA';

— Selection + Projection + Scan operations

Phase 2: Data Localization (Fragment Processing)

Convert the global query into fragment queries based on how data is distributed.

Tasks:

¢ |dentify relevant fragments
e Apply fragmentation rules
o Apply localization rules

Example:

If EMPLOYEE table is horizontally fragmented:

¢ EMP1 (North Region)
e EMP2 (South Region)

Then query becomes:

SELECT * FROM EMP1 WHERE CITY='PATNA'
UNION
SELECT * FROM EMP2 WHERE CITY='PATNA'

Phase 3: Global Optimization

Create the best possible execution plan.
Optimization techniques:

¢ Minimize communication

e Select optimaljoin order

¢ Reduceintermediate results
¢ Use semi-join if beneficial

Phase 4: Local Optimization and Execution

Each local site optimizes its own sub-query.
Local optimization involves:

e Choosing best access path

¢ Usingindexes

e Using sorting algorithms

¢ Using efficient join strategies

Results are sent back to the coordinator for final assembly.

4. Join Strategies in Fragment Relations

When relations are fragmented across sites, joins become challenging.

Below are the common distributed join strategies:

A. Semi-Join Strategy

Reduces the amount of data transferred.
Steps:

Send projection of join attribute from Site A to Site B
Site B filters its relation

Send only matching tuples back to Site A

Final join at Site A

ron -

Benefit:

Minimum communication cost.

B. Full Fragment Transfer
Transfer one full fragment to the site of the other fragment.
Example:

Send R1 to site of S1 and perform join.

Benefit:

Simple and fast for small fragments.

C. Hybrid Join Strategy

Combination of semi-join + full transfer.
Uses:**

¢ When fragments are too large
¢ When selective filtering is possible

D. Bloom Join

Uses Bloom filters to reduce communication cost.
Steps:
1. Site A sends Bloom filter of join attributes to Site B

2. Site Bfilters tuples
3. Sends only possible matching tuples back

Benefit:

Less data transferred than semi-join.

E. Local Fragment Join

If required fragments are available locally at one site, perform join locally without
communication.

F. Repartition Join

Re-partition both relations by join key and send partitions to appropriate sites.

Used when:

Data is evenly distributed.

G. Broadcast Join
Broadcast smaller relation to all sites containing the larger relation.
Used when:

One relation is very small.

Table: Comparison of Join Strategies
Join Strategy Communication Cost Best Use Case

Semi-Join Low Selective joins, large tables

Join Strategy Communication Cost Best Use Case

Full Transfer High Smalltables

Bloom Join Medium-Low Better than semi-join for large data
Local Join Zero All fragments at one site
Repartition Join Medium Distributed parallel join

Broadcast Join Low/Medium One relation very small

5. Global Query Optimization

Global optimization finds the most efficient execution plan for the entire distributed query.

Goals:

e Reduce communication cost
e Reduce total response time
¢ Reduce resource usage

Major Techniques Used

1. Rule-Based Optimization (RBO)

Uses transformation rules such as:

e Selection pushdown
¢ Projection pushdown
e Joinreordering

¢ Join associativity

e Fragment elimination

Example rule:

o(condition) (R W S) = (o(condition) (R)) ™ S

2. Cost-Based Optimization (CBO)

Evaluates cost formulas and selects the lowest-cost plan.

Cost Formula

Total Query Cost = Local Processing Cost + Communication Cost + Disk Access
Cost

3. Heuristic Optimization

Uses general guidelines like:

e Perform selection early

¢ Perform projection early
¢ Use semi-joins

¢ Minimize data movement

4. Dynamic Optimization

Optimization decisions change at run-time based on:

¢ System load
¢ Network performance
¢« Available resources

Formulas

1. Cost of Distributed Query

Total Cost = Local Processing Cost + Communication Cost + Remote Access Cost

2. Semi-Join Formula

R X S =R X (n JoinAttribute(S))

3. Serialization of Distributed Query

Global Optimization = ¥ (Local Optimization + Communication Minimization)

Unit-6.0: Heterogeneous Database (8 Hrs)
1. Architecture of Heterogeneous Database

A Heterogeneous Database System (HDBS) is a distributed database system where
different sites use different DBMSs, data models, query languages, schemas, and hardware
platforms.

Key Characteristics

¢ Contains multiple autonomous databases.
¢ Databases may differin:
o Data Model (Relational, Object-oriented, Hierarchical etc.)
o Query Language (SQL, OQL, Native languages)
o Hardware/OS
o Transaction Protocol
¢ Communication and coordination are done through a middleware or mediator.

Basic Architecture
A heterogeneous system has three main layers:
(A) Local Layer

¢ Individual databases operate independently.
e Each DBMS maintains its own local schema and performs local queries.

(B) Global Conceptual Layer / Federated Layer
o Integrates all local schemas into a Global Conceptual Schema (GCS).
e Provides a uniform view of all distributed databases.
¢ Acts as a communication bridge.

(C) External/Application Layer

¢ Represents how applications and users see the global database.
¢ User queries go to the GCS - translated » executed at local sites.

Types of Heterogeneous Database Architectures

1. Federated / Multidatabase System (MDBS)
o Local systems remain autonomous.

o Only partial sharing of data happens.
2. Client/Server Architecture
o Clientissues global queries.
o Server (mediator) decomposes queries and communicates with local DBMS.

3. Mediator—Wrapper Architecture
o Wrapper: Converts global queries into local DBMS-compatible format.

o Mediator: Integrates results from all wrappers.

2. Database Integration

Database integration means combining multiple heterogeneous databases into one unified
system.

Integration is needed because:

e Organizations use multiple DBMS types.
¢ Need consistent global access to distributed data.
e Need a unified interface for decision making.

Two Main Tasks of Database Integration

(A) Schema Translation
Converts schemas of different databases into a common data model (CDM).
Steps in Schema Translation

1. ldentify the source DBMS type (Relational, XML, Object DB etc.).
2. Map source model constructs to CDM constructs.

3. Convert:
o Datatypes
o Keys
o Relationships

o Constraints
4. Resolve semantic differences (meaning of data).

Example

¢ Object-oriented class > Relational Table
¢ XML structure > Relational or Object model

(B) Schema Integration

Combines multiple translated schemas into a single global schema.

Tasks in Schema Integration

1. Schema Matching
o Identify correspondences between elements of different schemas.
o Example:
= Customer_ID © CustID
2. Schema Merging
o Combine matched elements into a single definition.
3. Conflict Resolution
Three types of conflicts must be resolved:
o Naming Conflicts
= Same name, different meaning (Homonyms)
= Different name, same meaning (Synonyms)
o Structural Conflicts
= Different representations of the same concept.
Example:
= One DB stores "Address" as a single field; another uses
multiple fields.
o Data Type Conflicts
= Example: INT in one DB and VARCHAR in another.
4. Create Global Conceptual Schema (GCS)
o Finalunified schema seen by the user.

3. Query Processing Issues in Heterogeneous Databases

Query processing in HDBS is complex because of differences in:

¢ Query languages

¢ Datamodels

¢ Local execution strategies
¢ Communication protocols

Major Issues

(A) Query Decomposition

e Aglobal query must be broken into sub-queries for each local database.
e Decomposition must consider:

o Localschema

o Data model differences

o Local capabilities

(B) Query Translation

e Each sub-query must be translated to the local DBMS query language.
e Example:
o SQL query converted into OQL or a native API call.

(C) Metadata Conflicts

¢ Local sites may use different metadata formats.
e Schema mismatches cause problems during query interpretation.

(D) Data Model Differences

¢ Relational results must be converted to object-oriented structures or vice versa.

(E) Execution Optimization

e Global optimizer must decide:

o Which site to query first

o Where joins should occur

o How to minimize data transfer cost
¢ Must consider:

o Network latency

o Site load

o Local query optimizers’ capabilities

(F) Heterogeneous Transaction Management

¢ Distributed transactions involve multiple DBMSs.
¢ Two-Phase Commit (2PC) may not work uniformly.
¢ Recovery mechanisms differ across systems.

(G) Data Integrity and Consistency

e Different DBMSs may handle constraints differently.
¢ Ensuring global consistency is a major challenge.

(H) Security Issues

¢ Each database may enforce different security policies.
e The global system needs uniform access rules.

Summary (Copy Format)

Unit-6.0: Heterogeneous Database (8 Hrs)

1. Architecture of Heterogeneous Database

- Involves multiple autonomous databases using different DBMSs, data models,
and languages.

- Layers: Local Layer, Global Conceptual Layer, External Layer.

- Architectures: Federated System, Client/Server, Mediator-Wrapper.

Database Integration

Schema Translation:

- Converts local schemas to a common data model.

- Handles data type, structure, and semantic conversions.

PN

B. Schema Integration:
- Combines multiple schemas into a Global Conceptual Schema.
- Resolves naming, structural, and data type conflicts.

Query Processing Issues in Heterogeneous Database
- Query decomposition and translation.
- Metadata and data model differences.
- Global optimization and execution issues.
- Transaction management challenges.
- Ensuring consistency and security.

	📘 Distributed Computing – Unit 1.0 (Detailed Notes)
	1. What is Distributed Database System (DDBS)?
	Definition

	2. Features of Distributed Database Systems
	3. Promises of DDBS (Advantages)
	4. Design Issues in Distributed Database System
	a) Fragmentation
	b) Replication
	c) Allocation
	d) Query Processing
	e) Concurrency Control
	f) Reliability & Fault Tolerance
	g) Data Consistency
	h) Security

	5. Distributed DBMS Architecture
	1. Client/Server Architecture
	Description
	Working
	Advantages
	Disadvantages

	2. Peer-to-Peer (P2P) Architecture
	Description
	Features
	Advantages
	Disadvantages

	3. Multi-Database System (MDBS)
	Description
	Features
	Advantages
	Disadvantages

	Common Formula (Copy Format)
	1. Data Allocation Cost Formula
	2. Query Response Time
	3. Replication Overhead
	4. Reliability of Distributed System

	📘 Distributed Computing – Unit 2.0 (Detailed Notes)
	Distributed Database Design (DDD)

	1. Distributed Database Design Concept
	Aim of Distributed Design

	2. Objective of Data Distribution
	1. Improved Performance
	2. Reliability and Availability
	3. Reduced Communication Cost
	4. Scalability / Growth
	5. Data Sharing
	6. Autonomy

	3. Data Fragmentation
	Goals of Fragmentation
	Types of Fragmentation
	A. Horizontal Fragmentation
	Example
	Formula

	B. Vertical Fragmentation
	Example
	Formula

	C. Mixed / Hybrid Fragmentation
	Example

	Correctness Rules for Fragmentation

	4. Allocation of Fragments
	1. Centralized Allocation
	2. Replicated Allocation
	Advantages
	Disadvantages

	3. Partitioned Allocation
	Advantages
	Disadvantages

	4. Mixed Allocation
	Fragment Allocation Formula (Copy Format)
	Minimization of Total Allocation Cost
	Query Processing Cost

	5. Transparencies in Distributed Database Design
	1. Fragmentation Transparency
	2. Replication Transparency
	3. Location Transparency
	4. Local Mapping Transparency
	5. Distributed Query Transparency
	6. Transaction Transparency
	7. Performance Transparency

	📘 Distributed Computing – Unit 3.0 (Detailed Notes)
	Distributed Transaction and Concurrency Control

	1. Basic Concepts of Transaction Management
	Properties of Transaction (ACID)
	Why Transaction Management?

	2. Objective of Distributed Transaction Management
	1. Ensure Global ACID Properties
	2. Coordination
	3. Failure Recovery
	4. Atomic Commitment
	5. Global Consistency
	6. Minimize Communication Cost

	3. Model for Transaction Management
	1. Local Transaction Manager (LTM)
	2. Global Transaction Manager (GTM)
	3. Transaction Components
	a. Coordinator
	b. Participants / Cohorts

	4. Commit Protocols
	i. Two-Phase Commit Protocol (2PC)
	ii. Three-Phase Commit (3PC)

	4. Distributed Concurrency Control
	1. Maintain Serializability
	2. Avoid Conflicts
	3. Ensure Isolation
	4. Handle Distributed Environment Challenges

	5. Concurrency Control Anomalies
	1. Lost Update Problem
	2. Dirty Read Problem
	3. Unrepeatable Read
	4. Phantom Read

	6. Distributed Serializability
	Types of Serializability
	Global Serialization Graph (SG)

	7. Locking Based Algorithms
	Types of Locks
	1. Shared Lock (S-lock)
	2. Exclusive Lock (X-lock)

	Two-Phase Locking (2PL) Protocol
	Phase 1: Growing Phase
	Phase 2: Shrinking Phase
	Guarantee:

	Distributed Locking Algorithms
	1. Centralized Lock Manager
	2. Primary Copy Locking
	3. Distributed (Fully Decentralized) Locking
	4. Majority Consensus Locking

	Deadlock Handling
	Two Methods

	Formula (Copy Format)
	1. Serializability Condition
	2. Locking Rule (2PL)
	3. Commit Protocol Rule

	📘 Distributed Computing – Unit 4.0 (Detailed Notes)
	Distributed Deadlock and Recovery

	1. Introduction to Deadlock
	Example (Simple Deadlock)
	Conditions for Deadlock (All must hold)

	2. Distributed Deadlock
	3. Distributed Deadlock Handling Methods
	A. Deadlock Prevention
	1. Wound–Wait Scheme
	Advantage: No deadlock occurs
	Disadvantage: Many rollbacks may occur

	2. Wait–Die Scheme

	B. Deadlock Avoidance
	Concept:
	Major Techniques:
	Limitation:

	C. Deadlock Detection
	1. Wait-for Graph (WFG)
	Distributed WFG
	Deadlock Detection Algorithms
	1. Path-Pushing Algorithm
	2. Edge-Chasing Algorithm
	3. Global State Detection

	4. Deadlock Recovery
	Recovery Techniques
	1. Transaction Rollback (Victim Selection)
	2. Partial Rollback
	3. Resource Preemption

	5. Two-Phase Commit Protocol (2PC)
	Phase 1: Prepare / Voting Phase
	Phase 2: Commit / Abort Phase
	Properties

	6. Three-Phase Commit Protocol (3PC)
	Phase 1: Can Commit?
	Phase 2: Pre-Commit
	Phase 3: Do Commit
	Advantages over 2PC

	Comparison of 2PC vs 3PC
	FORMULAS (Copy Format)
	1. Deadlock Condition
	2. Commit Protocol Rule
	3. Circular Wait Condition

	📘 Distributed Computing – Unit 5.0 (Detailed Notes)
	Distributed Query Processing and Optimization

	1. Concepts of Distributed Query Processing (DQP)
	Goal of DQP
	Major Activities

	2. Objectives of Distributed Query Processing
	1. Minimize Communication Cost
	2. Improve Performance
	3. Reduce Response Time
	4. Ensure Correctness
	5. Handle Heterogeneous Systems

	3. Phases of Distributed Query Processing
	Phase 1: Query Decomposition
	Steps:

	Phase 2: Data Localization (Fragment Processing)
	Tasks:
	Example:

	Phase 3: Global Optimization
	Phase 4: Local Optimization and Execution
	4. Join Strategies in Fragment Relations
	A. Semi-Join Strategy
	Steps:
	Benefit:

	B. Full Fragment Transfer
	Example:
	Benefit:

	C. Hybrid Join Strategy
	Uses:**

	D. Bloom Join
	Steps:
	Benefit:

	E. Local Fragment Join
	F. Repartition Join
	Used when:

	G. Broadcast Join
	Used when:

	Table: Comparison of Join Strategies
	5. Global Query Optimization
	Goals:
	Major Techniques Used
	1. Rule-Based Optimization (RBO)
	2. Cost-Based Optimization (CBO)
	Cost Formula

	3. Heuristic Optimization
	4. Dynamic Optimization

	Formulas
	1. Cost of Distributed Query
	2. Semi-Join Formula
	3. Serialization of Distributed Query

	Unit-6.0: Heterogeneous Database (8 Hrs)
	1. Architecture of Heterogeneous Database
	Key Characteristics
	Basic Architecture
	(A) Local Layer
	(B) Global Conceptual Layer / Federated Layer
	(C) External/Application Layer

	Types of Heterogeneous Database Architectures

	2. Database Integration
	Two Main Tasks of Database Integration

	(A) Schema Translation
	Steps in Schema Translation
	Example

	(B) Schema Integration
	Tasks in Schema Integration

	3. Query Processing Issues in Heterogeneous Databases
	Major Issues

	(A) Query Decomposition
	(B) Query Translation
	(C) Metadata Conflicts
	(D) Data Model Differences
	(E) Execution Optimization
	(F) Heterogeneous Transaction Management
	(G) Data Integrity and Consistency
	(H) Security Issues

	Summary (Copy Format)

