4 Transaction and Concurrency
Control Techniques

4.1 INTRODUCTION

'A transaction is a collection of operations that forms a single logical
unit of work".

Definition

For example, if we transfer money from one account to another account,
then the transaction consists of two updates one to each account.

e Consider an example:

Initial account balance of A =100

Initial account balance of B = 200

Suppose A wishes to transfer ¥ 50 to B.

After transaction account balance of A = 50

After transaction account balance of B = 250

e |et us look at the various steps involved in this single transaction:

e Out of these various steps certain steps require 1/O (input-output)
operations to be done and certain steps require CPU operations to be
done.

(For reading and writing we
need 1/0 operations and for
incrementation/decrementation,
CPU is required)

e To increase the efficiency of a CPU, it should not remain idle. We can
increase the efficiency by assigning CPU to other processes for CPU
operations while the CPU is idle.

T. {170 |[cpuf 110 | /o [cPu] 1/0 |

T,

cpu| I/0 [cpu|cpu| 1/0 |cpu|

® Inthiscase CPUis not leftidle because when transaction T, is performing
I/0 operation, than T, is utilising the CPU and when transaction T, is
performing the I/0 operation transaction T, is performing CPU operation.

ACID properties

There are 4 ACID properties that a transaction needs to follow:

17/ A —> Atomicity
2) C —> Consistency
3) I —_— Isolation
4 D —> Durability

1) Atomicity

'Atomicity states that either all transactions must reflect properly in
the database or none.

Definition

® |t means no transaction executes partially.
e Transaction control manager —responsible to ensure atomicity.

2) Consistency

'This property ensures that integrity constraints are maintained.

Definition

e In other words, consistency must be there before as well as after
the transaction.
e DBMS and application programmer are responsible to ensure
consistency of database.
For example, transfer of ¥ 1000 from account P to account Q.

Account balance of P = 2000 Account balance of P = 1000

Account balance of Q = 1000 Account balance of Q = 2000
Account balance (P+Q) = 3000 Account balance (P+Q) = 3000
(Initially) (finally)

3) Isolation

'Isolation means each transaction should feel like it is executing alone
in the system?

Definition

e The transaction should not feel as if any other transaction is also
executing parallelly.

Note:

After executing all the transactions concurrently; the result achieved by
the system should be the same as transactions are executing serially
(one after the other).

e Concurrency control manager — responsible to ensures isolation.
4) Durability

This property ensures that if any failure occur (power failure, hard
disk crash, etc.) than also system should be able to recover, i.e. even
after the failure result of the committed transaction remains same.

Definition

e Durability says that whatever changes we are making is permanent,
and in future, even there is any failure, these changes will never be
lost.

Previous Years’ Question e

Which of the following is NOT a part of the ACID properties of database
transactions?

1) Atomicity 2) Consistency

3) lIsolation 4) Deadlock-freedom

Sol: 4) (GATE-2016, Set-01)
Types of failures

1)

2)

3)

There are many kinds of failures that can occur in a system.

Some failures do not result in loss of information but some failures

result in loss of information.

Transaction failure: Logical error and system error are two types of
errors that lead a transaction to fail.

e Example of logical errors are overflow, resource limit exceeded, etc.

e Deadlock is a system error. As in this case, system enters an

undesirable state.

e Thus, a transaction can't continue its normal execution.

System crash: Due to the hardware malfunction, a database leads to

the loss of content, and therefore transactions might halt.

Disk failure: Due to the head crash or failure during a data transfer

operation, the content of a disk block might be lost.

Transaction states

A transaction passes through several phases in its life-cycle.

Partially
committed

Terminated

Aborted

Fig. 4.1 Life Stages of a Transaction

Active state

It is an initial state of a transaction.

Partially committed state

e A transaction is in a partially committed state when the final operation
of a transaction is executed. From here, it is a chance that a transaction
might be aborted.

Failed state
e When a transaction discovers that it cannot proceed with its normal
execution, it moves to the failed state.

Aborted state

e |f a transaction faces roll back, all the changes impacted by the
transaction are altered to form the previous image of the database.
Consequently, the transaction enters into the aborted life stage.

Committed state
e When a transaction completes its execution successfully, it moves to
the committed state.

Note:

Hey learners!!

Do you know what a terminated transaction is?

Well, a terminated transaction is the one that has either been committed
or aborted.

e A system has two choices when it moves to the aborted state:
1) Restart the transaction
2) Kill the transaction

e Transaction will restart only when the transaction was aborted due to
any hardware or software error.

Concurrent executions

e Concurrent execution allows more than one transaction to run
concurrently in a transactional system.

® So, inconsistency may be arises when multiple transactions are allowed
to update data concurrently.

Why do we need concurrent executions?

The reasons to allow concurrency are:

1) It enhances database performance and reduces waiting.

2) Better throughput and utilisation of resources can be accomplished.

Problem due to concurrent execution of transactions
e Due to the interleaving of operations between transactions, database
can lead to an inconsistent state.

4.2 PROBLEMS IN CONCURRENT EXECUTION

1) Dirty read problem 3) Overwriting uncommitted data
(write- read conflict) (write—write conflict)
2) Unrepeatable read problem 4) Phantom read
(read —write conflict) problem

1) Dirty read problem

'Reading the data written by an uncommitted transaction is called as
a dirty read"

Definition

e Let us make an assumption that a transaction T1 modifies a data
item X. Another transaction T2 undergoes read(X). But, due to any
reason transaction T1 is failed and the value of the database item is
rolled back to the old value.

e So, the value read by T2 is the incorrect one.

Note:

The write-read conflict is also known as reading uncommitted data.

E.g.

ROLL BACK R(A) // 100

A=A-50// 50

w(A) // 50
R(A) // 50
X =A%*0.04
A=A+X /52
w(A) // 52

FAIL

R(B)

B =B+ 50

w(B)

When transaction T, fails and T, executes completely, it will rollback and
change the value of A back to its old value.

® So, because transaction T, is not completed and committed and T,
is reading the data written by an uncommitted transaction, T, has
read the incorrect value of A.

Note:

e Dirty read does not implies inconsistency.
e |t only creates problem when the uncommitted transaction fails and
rollbacks due to any reason.

2) Unrepeatable read problem (read-write conflicts)
® Assume a scenario where T, performs two simultaneous read
operations on a specific data item. Another transaction T, modifies
the content of the data item in the time gap amidst the two read
operations.
e Consequently, T, will obtain distinct values at different time.
A = 20000 (Initially).

R(A) // 20000
R(A) // 20000
A = A - 15000//5000

w(A)
R(A) // 5000
A=A -10000
W(A)

® In the above example, when T, reads the value of A for the second
time, it will read a different value of A because the transaction T, has
changed the A's value in between first and second read of T..
e Areallife example of unrepeatable read problems can be considered
as:
During a flight reservation, let's say a customer C, checks the seat availability
and tries to book a ticket meanwhile suppose another customer C, booked
the ticket so, when customer C, reaches to the payment page, it might
happen that C, will get to read a different value of seat availability.

3) Overwriting uncommitted data (write-write conflicts)

e Write-write conflict problem arises when an update performed by a
transaction (say T,) on a data item is lost due to the update done by
another transaction (say T,).

For example,

Initially A =100

R(A) // 100

A=A-50// 50
R(A) // 100
X =A* 004

A=A+X /104

This update «— w(A) // 50
is lost
w(A) // 104
R(B)
B'= B +50
w(B)

e This problem is also known as lost-update problem.

® ConsiderT, and T, are two transactions executed almost at the same
time, and it is already shown in the above figure that operations of
these transaction are interleaved.

e So, the final value of item A is not going to be correct because
transaction T, reads the value of A before it is changed by T, in the
database.

® This results in loss of the value that is updated by T..

A =100 - A =50 - A =104

4) Phantom read problem

® A transaction T, reads a set of tuples from a table satisfying the
condition given in an SQL query.

® Now, consider another transaction T,, which inserts a new tuple into
the table satisfying the same condition given in the same SQL query
present in the transaction T..

® T, repeats the same query again, then T, will result in a row that is
not present previously (phantom).

e This situation is known as the phantom read problem.

rrecmee I

Eno Ename Salary
1 Asha 5000

3 Kimi 4000

SELECT * FROM Employee
WHERE Salary > = 3000;

INSERT INTO Employee
VALUES
(4, Disha, 3500);

Eno Ename Salary
1 Asha 5000
3 Kimi 4000

4 Disha 3500

SELECT * FROM Employee
WHERE Salary > = 3000;

(Here we can see SELECT is executed twice, the second time we get
additional row.)

Hey learners!!

Do you have any idea about the incorrect summary problem?

Now, we will study the incorrect summary problem with an example.

® Suppose one transaction calculating an aggregate summary on different database
items.

e While some of these items are updated by other transactions, incorrect summary
results can reflect as some values might be calculated by aggregate function before
updating their values and some after updating their values.

For example, let's say we wish to sum up the values of K, X and Y.
K =50, X=100,Y =200

T .

Sum =0
R (K)
Sum = Sum + K

R (X)

X=X+ 500

w (X)
R (X)
Sum = Sum + X

R (Y) ——> T, reads X after 500

is added and reads

Y before 200 is

R (Y) added, so a wrong
summary is a result.

Sum = Sum + Y

Y =Y+ 200
w (Y)

The sum of K = 50, X =100, Y = 200 supposed to be 350. But after updating of values
of X sum will be (50 + 600 + 200) = 850, if again T, tries to increase values of Y by 200
summary will be different.

e Activities like when a transaction starts, ends, aborts or commits must
be tracked by the system so that recovery can be possible.
e Following operations are tracked by the recovery manager:

1) Begin transaction 2) Read or write
3) End transaction 4) Commit transaction

5) Rollback (OR) abort

Commit transaction indicates Abort (OR) rollback indicates

a successful end of the that the transaction has ended
transaction and whatever unsuccessfully. Thus, whatever
updates done by the transaction changes is done by the

is committed to the database transaction to the database must
and later cannot be undone. be undone.

e The system keeps a log to monitor all the transaction operations so
that later it can retrieve all those information in case of any failure.

Commit point of a transaction

e Atransaction is said to be reached its commit point if all the operations
of a transaction execute successfully and are reflected in the log.

<

Rack Your Brain

R(y)
R(x)
R(y)
y=x+y
w(y)
R(y)

The following given schedule is suffering from:
1) Lost update problem 2) Unrepeatable read problem
3) Both 1) and 2) 4) Neither 1) nor 2)

D)

4.3 SCHEDULE

Definition E

'When transactions are executing concurrently in an interleaved manner,
then the order of execution of operations from any of the various
transaction is known as a schedule

® We can represent a schedule consisting of n transactions as T, T,, ..., T ..
® Interleaving of operations between the transaction is allowed in any

schedule.

Note:

Suppose there are two transactions T, and T, that have to perform m and
n number of operations respectively, then total number of possible
(m+n)!

m!n!

schedules =

Note:

We will use shorthand notation R, W, C and A for the operation read_item,
write_item, commit and abort, respectively, in any schedule.

Serial schedule

Definition E

'If the operations of each transaction are executed consecutively,
then the schedule is known as serial schedule'

Problem with serial schedule

The main problem with serial schedule is that it restricts the interleaving
of operations and thus also limits concurrency.

The serial schedule also leads to the wastage of processing time of the
CPU.

It also starves transactions. For example, if a transaction T, is quite
long, another transaction has to wait for T, to complete its operations.
Thus, the serial schedule is not good in practice.

@52)

Note:

In the serial schedule, transaction should be either T, followed by T, or
T, followed by T..

Non-serial schedule
Definition E

'A schedule S is non-serial, if the operations of each transaction
T participating in the schedule, are interleaved or not executed
consecutively'

Note:

e At atime only one transaction is active in serial schedule.
e |In serial schedule, next transaction is performed only when an active
transaction is committed.

e 'There are n! different valid serial schedules are possible for a set of
n transactions'

e Consistency is always guaranteed if transaction is executing serially.

@

Find the number of serial schedules possible when three transactions
executing?

Rack Your Brain

Example of serial and non-serial schedule

e |Let us consider the current values of accounts A and B are ¥ 1500 and
T 2500, respectively.
® Consider the following schedule where T, is followed T.:

R(A)

A=A-50

w(A)

R(B)

3 =[5 5+ 50

w(B) o
XA=VARSROND!
A=A-X
wW(A)
R(B)
BE=AB LW
w(B)

e The final value of accounts A and B, after the execution is ¥ 1160 and ¥
2840, respectively.

e Hence, total amount of money in accounts A and B remain same after
the execution of both transactions.

® Another serial schedule is also possible, i.e. T, followed by T..

R(A)
X=A%*0.2
A=A-X
W(A)
R(B)
B=B+X
w(B)

R(A)

A=A-50

w(A)

R(B)

BI="B 50

w(B)

e In this case also, the sum A + B is same and the final values in the
accounts A and B are ¥ 1150 and ¥ 2850, respectively.
e But consider an another non-serial schedule as shown below.

R(A)
A=A-50
R(A)
ME A 02
A=A-X
W(A)
R(B)
WwW(A)
R(B)
5 = 8 4F 50
w(B)
B=B+X —> This will not
w(B) preserve consistency

e After the execution of this schedule, we will get final values of accounts
A and B are ¥ 1450 and T 2790 respectively.

® Thus, the sum of amount in account A and B is going to increase by %
240 and the final state is inconsistent.

Note:

e |tisthe responsibility of concurrency control component of a database
system to make sure that after the execution of any schedule, the
database should remain in consistent state.

Complete Schedule
Definition E

‘A schedule S of n transactions T, T,, ..., T is said to be a complete
schedule if the following condition hold:

The last operation of each transaction is either commit or abort
operation’.

Example:

R (A)
R (A)
A=A-50
w(A)
Commit
A=A+50
w(A)
Abort

4.4 SERIALIZABILITY
Introduction:

'A property that tells about the correctness of the schedule when a
concurrent transactions are executing'

Definition

Uses of serializability
To maintain the data item in a consistent state.
Serializable schedule

'A transaction schedule is serializable if its outcome is equal to the
outcome of its transactions executed serially"

Definition

Note:

e A schedule that is not equivalent to any one of the serial schedule is

known as a non-serial schedule.

Result equivalent schedule

Two schedules are known as result equivalent if the final state of the
database comes out to be the same after execution.

Example
Assume initially,
X=2
Y=5

Given below are two schedules. Detect if they are equivalent or not with

regard to the results.

R(X)//2
X=X+ 5//7
w(X)
R(Y)//5
Y=Y+ 5//10
w(Y)
RX)//7
X=X*3/21
w(X)
Schedule S1
Final value of
X=21
Y =10

R(X)//2

X =X+5//7

w(X)
ROX)//7
X=X*3/21
w(X)

R(Y)//5

Y =Y+ 5//10

w(Y)

Schedule S2
Final value of
X =21
Y =10

R(X)//2
X =X * 3//6
w(X)
R(X)//6
X = X + 5//11
w(X)
ROY)//5
Y =Y + 5//10
w(Y)

Schedule S3

Final value of
X="1
Y =10

Thus schedule S1 which is serial schedule produces the output X = 21 and
Y =10 and non-serial schedule S2 also produces the final output same as
S1, i.e.

X =21and Y =10, thus both are result equivalent schedule but final output
of S3 is different. It produces output X =11 and Y = 10, thus S3 is not result
equivalent to S1or S2.

Based on serializability

v !

1) Conflict Serializable Schedule 2) View Serializable Schedule

Conflict serializability

® Let us consider a schedule S where | and |, are the two consecutive
operations belongs to transactions T, and T, respectively. Here (i # j).

® Suppose operation |, and |, is referring to different data items, then |, and
l; can be swapped without affecting the outcomes of any instruction in
given schedule.

Note:

W(A) denotes write operation on item A.

e When two operations refer to the same data item, order of those
operation matters.
e Conflict operations possible are:

T, T,
R(A) e W(A)
W(A) e R(A)
W(A) s W(A)

Operation R(A) ..o R(A) is non-conflicting

Conflict equivalent

'Two schedules are said to be conflict equivalent if the order of any
two conflicting operations is the same in both schedules'

Definition

® Two operations op, and op, are conflict operations if
i) op, and op, are atomic operations of distinct transactions.
ii) op, and op, are operated on the same data item.
iii) Either of op, or op, must be a write.
e Conflict equivalence establishes conflict serializability.
e 'Aschedule Sis known to be conflict serializable if it is conflict equivalent
to one of the serial schedule'

E.g.

R,(A) R(A)
w,(A) w;(A)
R.(A) R/(B)
w,(A) w,(B)
R,(B) R,(A)
w,(B) w,(A)
Schedule $1 Schedule S2
(non-serial schedule) (serial schedule)
Conflicts: R (A) — w,(A) Conflicts: R(A) = w,(A)
w,(A) — R,(A) w,(A) = R,(A)
W,(A) = W, (A) W,(A) = w,(A)
Therefore S is conflict equivalent to S,.
SOLVED EXAMPLES
Q1 Identify the given schedules are conflict equivalent (or) not?

S: R,(A) w, (A)

R,(A) w,(A) R ,(B) w,(B) R,(B) w,(B)

S,: R (A) w,(A) R (B) w,(B) R,(A) w,(A) R,(B) w,(B)

Sol:

R,(A)
w,(A)

R(B)
w,(B)

Conflicts operations in S :
R(A) = w,(A)
w,(A) = w,(A)
w,(A) = R, (A)
R,(B) = w,(B)
w,(B) = w,(B)
w,(B) = R,(B)

S, S,

R1(A)

w,(A)

R.(A) R,(B)
w,(A) w,(B) R.(A)
w,(A)
R,(B) R.(B)
w,(B) w,(B)

Conflicts operations in S:
R,(A) = w,(A)
w,(A) = w,(A)
w,(A) = R,(A)
R(B) = w,(B)
w,(B) = w,(B)
w,(B) = R,(B)

e Here, as we can see all the conflicts are occurring in the same order in both schedules
are same.

® Thus, schedule S, which is a non-serial schedule is conflict equivalent to serial schedule
S,.

® Therefore, schedule S is a conflict serializable schedule.

Consider the transactions T,, T, and T, and the schedules S, and S, given below:

Previous Years’ Question e

()@ w) s w,(2)

D1, 5 ry(2) 5 wy(2)

100 5 1,00 5 wiy)

200 5 () 5 () 5) 5 @) 5 waly) s wy(2) 5 () s wx) 5 wi(2)

2 10 5 1Y) 5 M) 5 () 5 (@) 5 @) 5 W) 5 W) w,(2) 5 wi(2)
WhICh of the following statements about the schedules is TRUE?
1) Only S, is conflict-serializable

2) Only S, is conflict-serializable

3) Both S, and S, are conflict serializable

4) Neither S nor S, is conflict serializable

Sol: 1) (GATE-2014, Set-03)

W N

=

DO A A

How to test conflict serializability for a given schedule

e Precedence graph helps to ascertain if a particular schedule is conflict serializable or
not.

e A precedence graph is based on read and write operations.

Note:

Hey learners!!

Do you have any idea about the precedence graph (Serialization graph)?

Let us read the definition of the precedence graph.

e Definition: 'Precedence graph (Serialization graph) is a directed graph
G = (V, E) that consists of a set of nodes V ={T, T, ..., T } and a set of
directed edges E={e, e,, ..., e_}.

Algorithm
Following are the steps to draw serialization (precedence) graph:

For all the transactions present in schedule S,

1
) create a node as T.

Make an edge (T,—>T)) if there is any conflict
2) operation such as write-read (OR) read—write
(OR) write—write from transactions T, to T,

e |fthereis nocycle presentinthe precedence graph, it means the schedule
is conflict serializable.

Note:

Hey Learners!!
The schedule S may or may not be conflict serializable if cycle is present
in the precedence graph.

(T>T), (T > Tp), (Tp - Tj), (Tj — T) is a cycle in a directed graph.

Note:

e Topological sorting is used to obtain the serializability order of any
transaction.

e \We can obtain more than one possible linear order using topological
sorting.

Example: Identify if the given non-serial schedule S is conflict serializable?

R(A)
w(A)
R(A)
w(A)
R(B)
w(B)
R(B)
w(B)
Schedule S

Sol: We will check whether this non-serial schedule is conflict serializable or not using

precedence graph.
(no cycle, means
conflict serializable)

1) Transactions T, and T, represents node of precedence graph.
I) Conflict operations are represented by edges.

The conflicting operations are:

R,(A) = W, (A)

W, (A) = R,(A)

W, (A) = W, (A)

R,(B) — W,(B)

W,(B) - W,(B)

Which are from transactions T, to T,. There are no conflicts from T, to T..

So, serialization graph has no cycle. Thus, the given non-serial schedule S is conflict
serializable.

SOLVED EXAMPLES

Q2 Identify the following schedule is conflict serializable or not?

R(X)
R(X)
W(X)
R(X)

W(X)

“ o For the provided schedule, the precedence graph is computed. It will deter-

mine if that schedule is conflict serializable or not.
1) Transactions T, T, and T, represent the node of the graph.
2) Conflict operations:

R,(X) — W,(X)
W,(X) = R,(X) > Edge from T,to T,
W,(X) = W,(X)

R,(X) > W,(X) —> Edge from T,to T,
R,(X) > W,(X) —> Edge from T, to T,

So, the precedence graph will be:

T,)& T,

There is non-existence of a cycle in the above serialization graph, we obtained. So,
the given schedule is conflict serializable. Thus, the possible serial schedule that
follows from the topological sorting of the obtained serialization graph:
T,>T,->T,

Q ~ Test whether the following schedule is conflict serializable or not.

R(A)
R(A)
R(A)
W(B)
W(A)
R(B)
W(B)

Sol: We will first check using precedence graph whether the given schedule is con-
flict serializable or not.
1) T,T, T,T, represents node of the graph.
2) Conflict operations are represented by edges:
W,(B) - W, (B): Edges from T to T,
R,(A) — W, (A): Edges from T, to T,
R,(A) > W_(A): Edges from T, to T,
R,(B) — W,(B): Edges from T, to T,
W, (B) - R,(B): Edges from T, to T,

So, we will get precedence graph as:

The above graph contains no cycle. Therefore, Conflict serializable.
Possible Serialized schedule after applying topological sort:
1. T,>T,->T,>T, 2. T, »>T,>T,>T, 3. T,>T,>T,>T,

Previous Years’ Question e

Let r(z) and w,(z) denote read and write operations, respectively, on a data item z by a
transaction T,

Consider the following two schedules:

S 109 1) 1) 1,40 Woly) W)

S,7 1,00 1,00 1,() W) () w,(x)

Which one of the following options is correct?

1) S, is conflict serializable and S, is not conflict serializable.

2) S, is not conflict serializable and S, is conflict serializable.

3) Both S, and S, are conflict serializable.

4) Neither S, nor S, is conflict serializable.

Sol: 2) (GATE-CSE-2021, Set-01)

View serializability
Consider two schedules S1 and S2 having the same set of operation.

If T, reads initial value of A in S, then T, should also read

b initial value of data item Ain S,.

If T, performs final write operation on data item A in
2) schedule S, then T, should also perform the final write
operation on A in schedule S,.

If T, reads the value produced by T, in schedule S, then T,

E must also read the value produced by T, schedule S,.

Note:

When a transaction performs a write operation on any data item (say A)
without any prior read. It is known as blind write.

Note:

The condition for a schedule to achieve view serializability is: It should be
viewed equivalent to either of the realizable serial schedules.

E.g. Consider three transactions: T.: r,(A) ; w,(A) ; T,: w,(A) ; and T_: w,(A);
The schedule S: r(A) ; w,(A) ; w,(A) ; w,(A) ; C, ; C,; C,; where blind
writes are W,(A) and W_(A).

Yes], l,No

Then view Then check for
serializable blind writes
Blind No Blind
writes writes
Check for view Not view
serializability serializable

Note:
i) View serializability is a necessary condition for a schedule to be
conflict serializable but opposite is not true.

View serializable < Overall
schedule serializable
schedule

Conflict serializable
schedule

Fig. 4.2 Diagrammatic Representation of Conflict
Serializable and View Serializable Schedule

Example: Determine if the following schedules are view equivalent or not.

S, S,

R(A) R(A)
A=A+10 A=A+10
W(A) W(A)
R(B) R(A)

B =B+ 20 A=A+10
W(B) W(A)
R(A) R(B)

A=A+10 B=B+20
W(A) W(B)

R(B) R(B)
B=B*11 B=B*11
W(B) W(B)

i) If T, undergoes initial read operation on any data item X in S, it should
definitely read the initial value of X in S, also.

i) W,(A) - R,(A)
W,(B) = R,(B) holds for both schedule.

iii) In either of the schedules, final write on data item A and B is performed by T,.
Thus, schedule S, is view serializable to S..

SOLVED EXAMPLES

Q1 Check whether the given schedule is view serializable or not.

R(A)
W(A)
W(A)
W(A)

Sol: To find out whether a given schedule is view serializable or not, first, we will find
out whether a given schedule is conflict serializable or not, because
we know if a schedule is conflict serializable then schedule is also view serializable.
Conflict serializability check:

e The above graph contains cycle, thus it is not conflict serializable.

e Check if there is any blind write, if no blind write then it is not view serializable
schedule.

® In the given schedule blind write is present.

e So, now we will test for view serializability for that we will draw polygraph.

e To draw polygraph, following steps are required:
i) T,T, T, represents nodes of the graph.
ii) T, will execute first, as T, is depending on T, and T, is depending
onT.

® T, should be the last one to execute, based on the writes.
e We will get the following graph:

So, the serial schedule we will getis: T, > T, > T..
(Topological order from topological sort.)
Thus the given schedule is view serializable.

Q2 Consider the following given schedule:

R(A)
W(A)
W(A)

Is it view serializable schedule?

Sol: First, we will find out whether a given schedule is conflict serializable or not.
" For that we will draw precedence graph.

e Acycle is present in the above graph. So, it is not conflict serializable.

e Check if there is any blind write, if no blind write then it is not view
serializable schedule.

e In the given schedule blind write is present.

®* Now, we will test for view serializable, so we will draw polygraph.

T, has to start first as read operation is performed by T, and since final
write operation is also performed by T.. So, there will be an edge from T, to
T,. It means graph is having cycle.

We can conclude that the given schedule is neither conflict serializable
nor view serializable.

3 Is the following given schedule view serializable?
Q T.: R(x), T,: R(y), T,: W(x), T,: R(y), T_: W(y), T.: W(x), T,: R(y)

sol: [e]

R(X)
R(Y)
W(x)
R(Y)
W(y)
W(x)
R(y)

First, we will draw a precedence graph to check conflict serializable schedule:
) T,T,T,represents nodes of a graph.
1) All conflict operations represent edges of precedence graph.

©, (%)

Cycle is present in
this precedence graph

e Thus, the given schedule is not a conflict serializable schedule.

e We will check if there is any blind write, if no blind write then it is not view
serializable schedule.

® In the given schedule blind write is present.

e Now, draw polygraph to check view serializability

® (™)
()

As T, is the only transaction that performs read and write on variable x so the initial
we are ignoring T..

T, has to start first as initial read operation is performed by T, on variable y, there
will be an edge from T, to T..

Due to updated read dependency from T, to T,, there will be an edge from T, to T,.
So, there is cycle in the graph. So, the given schedule is not view serializable.

0

How many conflicting operations does schedule S have ?
Schedule S: r (M) w,(M) r (M) w.(N) r,(N) w,(N)

Rack Your Brain

4.5 BASED ON RECOVERABILITY

e To ensure the atomicity of the transaction, we undo the effect of the
transaction whenever it fails.

e Also if a transaction T, is depending on T, that needs to be aborted.

e \We need to put some restrictions on the schedule to achieve this.

Irrecoverable schedule

R(A)
W(A)
R(A)
Commit
R(B)

e The above given schedule is not recoverable (irrecoverable) schedule
since commit(T,) happens before commit(T)).

* Now suppose T, fails before it commits. T, has to undergo abort.

e But abort(T,) is not possible as it has already undergone commit
operation.

e So, it is a situation where it is not possible to recover from the
failure of T..

Recoverable schedules

‘A schedule where for each pair of transactions T, and T, the commit

operation of T, must appear before the commit operation of T, if T, reads

a data item previously written by T

e Given below is an example depicting instances of recoverable and
irrecoverable schedules:

17

R(A) R(A)
A=A-50 A=A+50
Rollback W(A) W(A)
ROA) R
X = A * 0.04 X =A*0.04
A=A+X A=AEX
W(A) W(A)
Commit R(B)
_________ B =B+ 50
Fail k=) W(B)
B =B + 50 .
Commit
W(B)
Commit Commit
Non- recoverable Recoverable schedule
schedule
Note:

Hey Learners!!

Do you know what a recoverable schedule guarantees?

Well, it guarantees that a transaction does not need to roll back once it
commits.

Ensuring recoverability of schedule

T, should commit only after T, commits if T, depends on T..

If the above condition is satisfied then it is guaranteed to have a recoverable
schedule.

Example: The below given schedule is an example of recoverable schedule.

W(A)
R(A)
Commit

Commit

Note:

A recoverable schedule may have dirty read problem.

Note:

Set of the recoverable schedules are subset of set of all possible
schedules.

Cascading Aborts
If one transaction failure causes multiple transactions to roll back, it is

called as cascading roll back (or) cascading aborts.

Example:

R(A)
W(A)
R(A)
Rollback W(A)
N R(A)
. W(A)
Fail Commit
Commit
Commit

® Here, rollback of T, will result in rollback of T, and rollback of T, will
result in rollback of T, which is cascading rollbacks.

e |tisrecoverable schedule but due to cascading rollbacks, other problem
arises like less throughput, more waiting time.

e Just because of rollback of T, here T, T, T, all needs to rollback.

e Thus, cascading rollbacks must be avoided.

Cascadeless schedule

Cascading rollback is not desirable as they undo a good amount of work.
So, it is better if we can avoid the cascading rollback.

Schedule that is restricted in such a way that cascading rollback cannot
occur is known as cascadeless schedules.

Definition E

'A cascadeless schedule is one, where for each pair of transactions
T, and I such that I reads a data item previously written by T, the
commit operation of T, appears before the read operation of T,

Note:

Hey learners!!

Do you know that a cascadeless schedule is a recoverable one?
See the below example.

Example:
R(A)
W(A)
Commit
R(A) —> Cascadeless
W(A) schedule
commit
R(A)
W(A)
Commit
Strict schedule

'Strict schedules are those where a value written by a transaction cannot
be read or written by another transaction until the previous transaction

commits (or) aborts'

Example:
R(A)

W(A)
Commit

W(A)/R(A)

Here, S is a strict schedule, i.e. it is both cascadeless as well as recoverable.

Note:

Set of all cascadeless schedule are subset of set of recoverable schedule.

Note:

Set of all strict schedule are subset of set of all cascadeless schedule.

Recoverable
schedule

Strict
schedule

Fig. 4.3 Different Type of Schedules Based on Recoverability

—

v V

Serializable schedule Non-serializable schedule

| |

Strict schedule l ‘l'
Recoverable Non recoverable
schedule schedule

|
!]

Cascadeless Cascading
schedule schedule

——

Strict Not strict
schedule schedule

Database recovery techniques

e Failures can occur due to system crashes or transaction errors, etc.

e There are few techniques that we can use to recover from these failures.

e The recovery process uses commit point, system log concepts to
recover from any failure.

v v

1) Deferred update 1) Shadowing or shadow paging
(no UNDO/REDO technique) (no UNDO/no REDO algorithm)

II) Immediate update
(UNDO/REDO and UNDO/no REDO algorithm)

Checkpointing in the system log

e 'Checkpointing is a type of entry in the log.

® Generally arecord is written into the log periodically and all the updates
are recorded on the disk during checkpointing.

® So, transactions that are committed in the log before checkpointing
needs not to execute their WRITE operation if any system crash occurs.

e Usually, log records are denoted as:

® <T, start> x Transaction T, has started.

* <T, x Xj, V,, V,> x Transaction T, has performed a write on data item XJ..

Before the write, X had value V, and after the write X will have value V.,

® <T, commit>, Transaction T, has committed.

® <T, abort>, Transaction T, has aborted.

Why we need checkpoints?

1) Itisverytime consuming to search the entire log in case of any failure,
thus it is always a good idea to maintain checkpoints in the log.

2) Checkpoint also increase the throughput of the system as we need
not to waste time in a recovery of a transaction in case if we need to
execute that transaction again due to any reason.

UNDO/REDO recovery algorithm with checkpoints

1) There are two list of transactions that needs to be maintained by the
system:

i) The active transactions
ii) Committed transactions since the last checkpoint.

2) Perform UNDO for every write operation of the uncommitted/active
transaction.

3) Perform REDO for every write operation of a committed transaction.

Example: Consider the given checkpointing protocol and the operations

given in the log.

(start, T,)

(write, T, y, 3, 2)
(start, T,)
(commit, T,)
(write, T,, z, 4, 7)
(checkpoint)
(start, T,)

(write, T,, X, 1, 8)
(commit, T.)
(start, T,)

(write, T,, 2, 7, 2)

Now, if crash occurs,the system will try to recover. The undo and redo
operations are as follows:

Undo list: T, T, (It means transaction T, and T, will be undone.)

Redo list: T, (It means transaction T, will be redone.)

4.6 CONCURRENCY CONTROL TECHNIQUE

e We know that isolation is one of the important properties that a
transaction needs to follow.

e |t is mandate while concurrent implementation of transactions to
preserve isolation property.

e A concurrency control technique is used to achieve this.

Note:

Concurrency control protocols guarantee serializability.

4.7 LOCK-BASED PROTOCOLS

e |f we follow mutual exclusion to access the data items, then we can
ensure the serializability.

® |t means any other transaction cannot modify the data items while the
same data item is being accessed by some other transaction.

e \We use lock based protocols for this purpose.

e Atransaction can have access to a data item if any lock on that specific
item is currently held by that transaction.

Definition E

'A lock is a variable associated with a data item that describes the
status of the item with respect to possible operations that can be
applied to it

Lock
e There prevails two distinct locking modes: shared and exclusive.

v v

1) Shared 2) Exclusive

‘If a transaction T, has obtained ‘If a transaction T, has obtained
a lock on item Q in shared mode, a lock on data item Q in exclusive
then T, can read but cannot write mode, then T, can both read and
Q. write Q.
Shared lock is denoted by S. Exclusive lock is denoted by X.

S True False

X False False

Fig. 4.4 Relationship Between Shared and Exclusive Lock

A transaction acquires a lock in a particular mode based on the types
of operation it wants to perform on the data item Q.

The concurrency control manager is going to grant these locks to a
transaction.

After getting the locks, a transaction can proceed.

Note:

e Figure 4.4 represents that a shared mode is compatible with shared
mode but it is not compatible with exclusive mode.

e The instruction lock-S(A) imparts shared lock on data item, A.

e Similarly, To get a exclusive lock on data item A, we have to use lock-
X(A) instruction.

e To unlock a data item A, we have to use unlock(A).

e Locking a data item by a transaction is mandate to have access on it.

e |f a transaction has acquired an incompatible lock on a data item, no
other lock can be provided to another transaction to access the same
data item until that lock has been released. In this case, another
transaction has to wait.

Difference between shared and exclusive lock
Shared lock imparts read access on a specific data item. However, exclusive
lock mode imparts both read and write grants to a transaction on a targeted
data item.
Example: Folks!!
Consider there are two accounts called A and B.
Transactions T, and T, can access these two accounts.
Suppose transaction T, transfers rs. 50 to account A from account B.
Total amount (A+B) is displayed by transaction T,.

T,: LX(B) T,: L_S (A);
R (B); R (A);
B=B-50; U (A);
W (B); L_S (B);
U (B); R (B);
LX (A); U (B);
R (A); display (A + B);
A=A + 50;

W (A);
U (A)
Note:

In the above example, L represents lock, R represents read_item, W
represents write_item and U represents unlock. We will consider these
notation further also.

® Let the value of A and B is 2100 and % 200 initially. If we execute T,, T,
serially then T, will display A + B = ¥ 300.

e But if these transactions are executed concurrently, then there may be
the case possible such that T, will display incorrect result.

Example:

L_X(B)
R(B)
B=B - 50
W(B)
u(B)
L_S(A)
read(A)
U(A)
L_S(B)
read(B)
u(B)
display (A + B) — Produces inconsistent
L_X(A) result.
read (A)
A=A+50
Write (A)
U(A)

e Releasing the lock too early in the simple locking case will lead to

inconsistent result.
(T, produces an inconsistent result as T, is unlocking the data items

too early.)
e Simple locking can also lead to an undesirable situation.

Example:

L_X(B)
read(B)
B=B-50
Write(B)
L_S(A)
read(A)
L_S(B)
L_X(A)

Here, the above example is leading to deadlock as T, wants a shared lock
on B but T, holds an exclusive lock on B.

Similarly, T, wants an exclusive lock on data item A that is held by T, in
shared mode. Thus, T, is waiting for T, to unlock A and T, is waiting for T,
to unlock B.

Hey Learners!!

Do you know what happens when a deadlock is present?

When none of the transactions is able to proceed with its normal execution. This
situation is known as deadlock.

Note:

If deadlock persists, either of the transactions must undergo
roll-back/abort by the system.

Drawbacks of simple locking

i) It leads to an inconsistent result.

ii) Simple locking can also lead to deadlock.

iii) Simple locking does not guarantee serializability.

Example of simple locking schedule that does not guarantee serializability

is as follows:

lock_X(A)
write(A)
Unlock_X(A)
lock_S(A)
read(A)
Unlock_S(A)
lock_X(A)
write(A)

Unlock_X(A)

This is not conflict serializable schedule as to when we will draw precedence
graph, cycle will be present.

Conflict operations are:

1) W,(A) > R,(A)

2) R (A) > W,(A)

How to grant locks?

e When a transaction asks for a lock on a data item in a particular mode
and there is no other transaction that holds a lock on the same data
item in a conflicting mode, then a lock can be granted.

e Starvation is a situation where a particular transaction does not make
progress as every time a lock is granted to other transaction.

Two phase locking protocol
e Two phase locking protocol always guarantee serializability.
e In 2PL, locking and unlocking is done in 2 phases:

1) Growing phase: 'A transaction can acquire new locks on items
but no other lock can be released. It is also known as expanding
phase.

2) Shrinking phase: 'During this phase a transaction can release
existing lock but cannot acquire new locks"

N
growing
phase

> X

Fig. 4.5 Graphical Representation of 2PL

—> shrinking
phase

Note:

Initially, a transaction obtains locks, and it is said to be in growing phase.
After that, a transaction enters the shrinking phase.

Once a transaction initiates lock release phenomenon, it cannot generate
any further lock acquisition requests.

L-S(A)
L-S(A)
L-X(B)
U(A)
e LS (After taking/obtaining
©) all the locks only,
L-S(B) 0 unlocking begins)
U(C)
L-X(A)
U(A)
U(B)
Note:

If two phase locking protocol is followed by all the transactions of a
schedule then it is definitely a serializable schedule.

Note:

Same as basic 2PL, 2PL with lock conversion gives only conflict serializable
schedule.

To upgrade a shared lock to an To downgrade an exclusive lock to
exclusive lock. a shared lock.

e Upgradation is allowed only in the growing phase whereas down
gradation is allowed only in the shrinking phase.

® In the following example, W(A) and W(B) will not be allowed since T, has
exclusive lock.

L-X(A)
W(A)
szﬁg; } —>Blocked
L-X(B)
W(B)

So, how can we determine the order in which serializability is obtained?
For that, there is something called a lock point.

Lock point

Definition

Point at which a transaction gets its final lock.
Lock point is used to determine the order of the transactions.

Drawbacks of two-phase locking protocol
1) 2PL may leads to cascading rollback.
2) Deadlock might be possible.
3) Starvation is also possible in 2PL.
Example: Consider a schedule S such that

L_X(A)
W(A)
L_X(B)
W(B)

U(A)
u(B)

L_S(A) If T, rollback then T,
also need to rollback

Rollback R(A)

e Example detecting deadlock.

L-X(B)
R(B)
B=B-50
W(B)
L-S(A)
R(A)

L-S(B) —> wait
wait €«— L-X(A)

® Here, T, is having exclusive lock on data item B and is requesting
exclusive lock on data item A.

e Similarly, T, is having shared lock on data item A and requesting shared
lock on data item B, which clearly says that deadlock is present.

e Which clearly says that deadlock is present.

e There are three types of two-phase locking.

v v y

1) Strict two phase 2) Rigorous two phase 3) Conservative two
locking protocol locking protocol phase locking
(Strict 2PL) (Rigorous 2PL) protocol

(Conservative 2PL)

Strict 2PL
e Strict 2PL guarantees strict schedules.

Definition E

'It is a variation of 2PL, a transaction T does not release any of its
exclusive (read and write) locks until it commits or aborts'.

® So, any other transaction cannot read or write an item written by T until
T has committed.

e |t leads to a recoverable schedule.

e Strict 2PL ensure that a schedule is:
1) Recoverable schedule 2) Cascadeless schedule

e The advantage of strict 2PL is that it avoids cascading rollbacks.
e Strict 2PL is not deadlock free.

Example:
L

L-X(A)
W(A)
Commit
ua)
L-S(A)
R(A)
U(A)
Commit

(Since lock on A is already given to T, it will never be granted to T, that is
T, will not able to read/write same data item until transaction T, that has
written the data item performs commit.)

Note:

Hey Learners!!

Do you know how can we decide the order of transactions in the strict
2PL?

Well, the order of transactions is decided by the sequence of lock points.

Whatever final order, we get is equivalent to serial schedule.

@

Rack Your Brain

Strict 2PL protocol guarantees:
1) Recoverable schedule

2) Cascadeless schedule

3) Strict schedule

4) All of the above

Previous Years’ Question g

Consider the following database schedule with two transactions T, and T,.

S = r,(x); r,(x); r,(v); w,(); r,(y); w,(x); a5 a,

Where r(z) denotes a read operation by T, on a variable z and a, denotes an abort by
transaction T,

Which one of the following statements about the above schedule is TRUE?

1) S is non-recoverable

2) S is recoverable, but has a cascading abort

3) S does not have a cascading abort

4) S is strict

Sol: 3). (GATE-2016, Set-2)

Rigorous 2PL
e Rigorous 2PL is more restrictive variation of strict 2PL.

'In rigorous 2PL, in addition to locking being in 2 phase, a transaction T
does not release any of its locks (shared or exclusive) until it commits
or aborts'

Definition

e Rigorous 2PL also guarantees strict schedules.

Conservative 2PL

In conservative 2PL, all the locks acquired will not be released until
transaction commits.

Definition

e |t says that once the transaction begins it is in its shrinking phase and
then transaction is in its expanding phase until it finishes.

e Advantages of conservative 2PL:
1) Conservative 2PL gives strict schedules.
2) It also gives freedom from deadlock.

Note:

Conservative 2PL may lead to starvation.

Conservative
2PL

Rigorous 2PL
Strict 2PL

Fig. 4.6 Relation Between Strict, Rigorous and Conservative 2PL

Deadlock
Definition E

'Deadlock is said to occur when each transaction T in a set of two or
more transactions is waiting for some item that is locked by some
another transaction T' in the set'

4.8 MULTIPLE GRANULARITY

e |t is better if we can group several data items and consider them as
an individual units instead of considering each individual data item on
which we will perform synchronisation.

Example: Let's make an assumption that a transaction T, demands access

over the whole database utilising the concept of locking protocol. Each

item in the database must be locked by T,. This process is time consuming.

In place of this, we can allow T, to issue a single lock acquisition plea.

Differently, if transaction Tj wants to access only few data items, then no

need to lock the entire database.

e Hence, there exists scope to establish the idea of multiple granularity.
e We can achieve this by allowing various size data items and by defining
a hierarchy of data granularities.
We can represent this hierarchy as a tree.
e A non-leaf node represents the data associated with its descendants.

Database

Fig. 4.7 Granularity Hierarchy

4.9 TIMESTAMP BASED PROTOCOLS

Note:

If we provide a timestamp to each transaction, then we can prevent

deadlock.
Definition: 'Transaction’'s Timestamp is a unique identifier assigned to
each transaction'

e \We assign timestamp to the transaction based on when a transaction
has arrived.
TS (T,) < TS (T,) means transaction T2 comes after T1.
e The serializabiltiy order can be found using the transaction timestamp.
e \We associate 2 timestamp values with each data item A.

v v

Write-TS(A) Read-TS(A)
The largest timestamp of any The largest timestamp of any
transaction that executed transaction that executed
write(A) successfully. read(A) successfully.

°* Timestamps will get updated if new write or read instruction is executed.

Timestamp ordering protocol

e We know that timestamp ordering based concurrency control techniques
do not use locks.
Therefore no deadlock will occur.

e In this protocol any conflicting write or read operation will execute in
timestamp order.

e |fitis not then such an operation is rejected and the transaction will be
rolled back.

Note:

Whenever the concurrency control scheme rolls back a transaction, the
system provides it with a new timestamp and restarts it.

Example: Consider a schedule:

R(A)
W(A)
W(A)

Suppose TS (T) = 1 and TS (T,) = 2 then conflicting action R (A) - W_,(A)
is allowed as TS (T) < TS (T,) but conflicting action W, (A) — W, (A)
is not allowed as transaction having greater timestamp has already
executed. So, it will be rolled back and restarted again with different
timestamp.

Example: Consider an example:

Suppose TS (T,) = 1and TS (T,) = 2 and following schedule is given.

R(A)
R(A)

W(A)

In this example there is no conflict operation from transaction T, to T, but
there is a conflict operation from transaction T, to T,. Since TS (T,) < TS (T,)
so, conflict operation from T, to T, i.e. R,(A) > W.(A) is not allowed. Thus,
this transaction T, will rollback and restart again with a new timestamp. Let
us say TS (T,)) =2 and TS (T)) = 3.

R(A)
R(A)

W(A)
T,T, is equivalent serial schedule.

Note:

In basic timestamp order protocol, if there are two conflict operations
that occur in the incorrect order, then we can reject later of the two
atomic operation through abort of the targeted transaction.

So, conflict serializability is secured through timestamp ordering.

Strict timestamp ordering
e A strict timestamp ordering ensures strict and serializable schedule.

® 'In strict timestamp ordering, a transaction T that issues a read_
item (A) or write_item (A) such that TS (T) > write_TS (A) has read
or write operation delayed until the transaction T' that wrote the
value of A has committed or aborted"

e The strict timestamp ordering avoids deadlock.

Definition

410 DEADLOCK HANDLING
There are different ways to handle a deadlock, for example, deadlock
prevention, deadlock detection and recovery.

Deadlock prevention

Note:

There prevails two mechanisms to ascertain deadlock prevention: wait-
die, wound-wait.

Definition E

Time-stamp: It is represented as TS(T,) and used to prevent deadlock.
Transaction timestamp is a unique identifier that is assigned to each
transaction.

1) Wait-die
e IfTS (T) <TS(T), meansT_is olderthanT .
Case 1: When an older (T) transaction tries to lock an element that is
already locked by younger (T) transaction then the older (T) transaction
has to wait.
Otherwise,
Case 2: When younger (T) transaction tries to lock an element that is
already locked by older (T) transaction then the younger (T) transaction
dies.

2) Wound wait

e IfTS(T)<TS (Tj), means T, is older than T,

Case 1: When an older transaction (T)) tries to lock an element that is

already locked by younger transaction (TJ.) then T, wounds T.

Otherwise,

Case 2: When a younger transaction (T, tries to lock an element which

is already locked by older transaction (TJ.) then T, has to wait.

® In both methods of preventing deadlock, younger of the two
transactions where the deadlock is present, get aborted.

e Both techniques are deadlock free as no cycle is possible in any of
these techniques.

Deadlock detection and recovery (wait for graph)

'In deadlock detection, system checks whether the deadlock exists
or not'.

Definition

e It helps in the detection of deadlock existence.

® A directed edge will be formed if transaction T, is waiting to lock an
item that is currently locked by transaction T,.

® Remove the directed edges from the graph if the lock is released by T,
on those items for which T, was waiting.

e Deadlock is present in the wait for graph if and only if graph has a cycle.

Example: Consider the figure given below:

Waiting for
—_—>
T, T,, T,
Waiting for
_—>
T, T,
Waiting for
_—>
T, T,

Waiting for
-
T, T,

Diagram representing wait for
graph with a cycle.

Graph-based protocols
e There is a graph-based protocol that does not use 2PL.
It is also called as tree protocol.

Note:

The main advantage of the tree protocol is that we can completely avoid
deadlocks.
e We only use exclusive locks in the tree protocol.
® Any data item can be locked at most once by each transaction T,
e These are the following rules:

1) Any transaction, T, is permitted to submit lock acquisition request on
any data item.

2) T, is permitted to lock data item, X if it has lock grant over parent of X.

3) Lock release can occur at any time instant.

4) The transaction T, cannot be granted lock on the same data item after
unlocking it previously.

Example: Consider the given below schedule:

lock-X(B)
lock-X(D)
lock-X(H)
unlock-X(D)
lock-X(E)
lock-X(D)
unlock (B)
unlock (E)
lock-X(B)
lock-X(E)
unlock (H)
lock-X(G)
unlock (D) e
lock-X(D)
lock-X(H) o G G
unlock (D)
unlock (H)
unlock (E) @ 0 o
unlock (B)
unlock (G) o

Thomas write rule

Thomas write rule rejects fewer write operations by modifying the checks
for the write_item (Q) operation as follows:

If read_TS (Q) > TS (T), then abort and roll back T and reject the

1) -
operation.

2) If write_TS (Q) > TS (T), then do not execute the write operation
but continue processing.

3) If none of the above two condition occurs, then execute the

write_ item (Q) operation of T and set write_TS (Q) to TS (T).

Example: Schedule are given below:
R(A)
W(A)

W(A)
Here, in Thomas write rule, W, (A) — W (A) is allowed, no rollback.

Note:

T, and T, are transactions such that time stamp of T, < time stamp of
T,. Then:

Basic time stamp ordering g (A) = W,(A)

protocol (similar to W,(A) = R(A) R.,(A) = R(A)
conflict serializable) W,(A) = W,(A)

Thomas write time stamp
ordering protocol (similar
to view serializable)

R,(A) > W (A) R,(A) = Ry(A)
W,(A) > R(A) W,(A) > W,(A)

Chapter Summary HE

Transaction: A collection of operations that forms a single logical unit of work.
ACID properties.

There are 4 ACID properties that a transaction needs to follow:

1) A —_—> Atomicity
2) C e Consistency
3) I — Isolation
4) D —> Durability

Types of failure in a system: Transaction failure, system crash, disk failure, power
failure, software crash, natural hazards, etc.

Transaction states: There are five states for a transaction namely active, partially
committed, failed, committed, aborted through which a transaction goes in its
lifetime.

Transaction processing system allows multiple transaction to run concurrently.
Concurrency problems in transactions:

1) Reading uncommitted data (W-R)

2) Unrepeatable read (R-W)

3) Overwriting uncommitted data (W-W)

4) Phantom read problem

Serial schedule: Serial schedule are those schedule where operations of each
transaction executes consecutively.

Complete schedule: When the last operation of each transactions is commit or
abort the operation. That schedule is known as complete schedule.
Serializability: Serializability is a property that indicates the correctness of the
schedule when a concurrent transactions are executing.

Types of schedule based on serializability:

1) Conflict serializable schedule.

2) View serializable schedule.

Types of schedule based on recoverability:

1) Irrecoverable schedule

2) Recoverable schedule

Chapter 4

Transaction and Concurrency Control Techniques

3) Cascade rollback recoverable schedule

4) Strict recoverable schedule

Recoverable schedules ensures that, once a transaction commits, it never rollbacks.
If one transaction failure causes multiple transactions to rollback, it is called as
cascading rollback.

A serializability order of the transactions can be obtained through topological
sorting of precedence graph.

There are different type of concurrency control techniques such as lock-based
protocols, timestamp based protocol.

Deadlock: When none of the transactions is able to proceed with its normal
execution, this situation is known as deadlock.

Two techniques to handle deadlock:

1) Deadlock prevention (wait-die and wound wait)

2) Deadlock detection and recovery

To prevent deadlock, there is a concept called as transaction timestamp denoted
as TS (T) which is a unique identifier assigned to each transaction.

	Notes_Ch-04_Transaction and Concurrency Control Techniques (29-11-2021)

