
Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4
Tr

an
sa

ct
io

n
an

d
C

on
cu

rr
en

cy
 C

on
tr

ol
 T

ec
hn

iq
ue

s
C

ha
pt

er
 4

141

4.1 INTRODUCTION

Definition

'A transaction is a collection of operations that forms a single logical
unit of work'.

For example, if we transfer money from one account to another account,
then the transaction consists of two updates one to each account.
	y Consider an example:

Initial account balance of A = 100
Initial account balance of B = 200
Suppose A wishes to transfer ₹ 50 to B.
After transaction account balance of A = 50
After transaction account balance of B = 250
	y Let us look at the various steps involved in this single transaction:

	y Out of these various steps certain steps require I/O (input-output)
operations to be done and certain steps require CPU operations to be
done.

Transaction and Concurrency
Control Techniques4

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

142

	y To increase the efficiency of a CPU, it should not remain idle. We can
increase the efficiency by assigning CPU to other processes for CPU
operations while the CPU is idle.

	y In this case CPU is not left idle because when transaction T1 is performing
I/O operation, than T2 is utilising the CPU and when transaction T2 is
performing the I/O operation transaction T1 is performing CPU operation.

ACID properties

1)	 Atomicity

Definition

'Atomicity states that either all transactions must reflect properly in
the database or none'.

	y It means no transaction executes partially.
	y Transaction control manager ® responsible to ensure atomicity.

2)	 Consistency

Definition

'This property ensures that integrity constraints are maintained'.

	y In other words, consistency must be there before as well as after
the transaction.

	y DBMS and application programmer are responsible to ensure
consistency of database.

For example, transfer of ₹ 1000 from account P to account Q.

There are 4 ACID properties that a transaction needs to follow:

1)

2)

3)

4)

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

143

3)	 Isolation

Definition

'Isolation means each transaction should feel like it is executing alone
in the system'.

	y The transaction should not feel as if any other transaction is also
executing parallelly.

		

Note:

After executing all the transactions concurrently; the result achieved by
the system should be the same as transactions are executing serially
(one after the other).

	y Concurrency control manager ® responsible to ensures isolation.
4)	 Durability

Definition

This property ensures that if any failure occur (power failure, hard
disk crash, etc.) than also system should be able to recover, i.e. even
after the failure result of the committed transaction remains same.

	y Durability says that whatever changes we are making is permanent,
and in future, even there is any failure, these changes will never be
lost.

After transactionBefore transaction

(finally)

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

144

Previous Years’ Question

Which of the following is NOT a part of the ACID properties of database
transactions?
1)	 Atomicity				 2) Consistency
3)	 Isolation				 4) Deadlock-freedom
Sol: 4)� (GATE-2016, Set-01)

Types of failures
	y There are many kinds of failures that can occur in a system.
	y Some failures do not result in loss of information but some failures

result in loss of information.
1)	 Transaction failure: Logical error and system error are two types of

errors that lead a transaction to fail.
	y Example of logical errors are overflow, resource limit exceeded, etc.
	y Deadlock is a system error. As in this case, system enters an

undesirable state.
	y Thus, a transaction can't continue its normal execution.

2)	� System crash: Due to the hardware malfunction, a database leads to
the loss of content, and therefore transactions might halt.

3)	 �Disk failure: Due to the head crash or failure during a data transfer
operation, the content of a disk block might be lost.

Transaction states
	y A transaction passes through several phases in its life-cycle.

Fig. 4.1 Life Stages of a Transaction

Active state
	y It is an initial state of a transaction.

		

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

145

Partially committed state
	y A transaction is in a partially committed state when the final operation

of a transaction is executed. From here, it is a chance that a transaction
might be aborted.

Failed state
	y When a transaction discovers that it cannot proceed with its normal

execution, it moves to the failed state.

Aborted state
	y If a transaction faces roll back, all the changes impacted by the

transaction are altered to form the previous image of the database.
Consequently, the transaction enters into the aborted life stage.

Committed state
	y When a transaction completes its execution successfully, it moves to

the committed state.

Note:

Hey learners!!
Do you know what a terminated transaction is?
Well, a terminated transaction is the one that has either been committed
or aborted.

	y A system has two choices when it moves to the aborted state:		
1) Restart the transaction							
2) Kill the transaction

	y Transaction will restart only when the transaction was aborted due to
any hardware or software error.

Concurrent executions
	y Concurrent execution allows more than one transaction to run

concurrently in a transactional system.
	y So, inconsistency may be arises when multiple transactions are allowed

to update data concurrently.

Why do we need concurrent executions?
The reasons to allow concurrency are:
1)	 It enhances database performance and reduces waiting.
2)	 Better throughput and utilisation of resources can be accomplished.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

146

Problem due to concurrent execution of transactions
	y Due to the interleaving of operations between transactions, database

can lead to an inconsistent state.

4.2 PROBLEMS IN CONCURRENT EXECUTION

1)	 Dirty read problem

Definition

'Reading the data written by an uncommitted transaction is called as
a dirty read'.

	y Let us make an assumption that a transaction T1 modifies a data
item X. Another transaction T2 undergoes read(X). But, due to any
reason transaction T1 is failed and the value of the database item is
rolled back to the old value.

	y So, the value read by T2 is the incorrect one.

Note:

The write-read conflict is also known as reading uncommitted data.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

147

	 		
When transaction T1 fails and T2 executes completely, it will rollback and
change the value of A back to its old value.

	y So, because transaction T1 is not completed and committed and T2
is reading the data written by an uncommitted transaction, T2 has
read the incorrect value of A.

Note:

	y Dirty read does not implies inconsistency.
	y It only creates problem when the uncommitted transaction fails and

rollbacks due to any reason.

2)	 Unrepeatable read problem (read-write conflicts)
	y Assume a scenario where T1 performs two simultaneous read

operations on a specific data item. Another transaction T2 modifies
the content of the data item in the time gap amidst the two read
operations.

	y Consequently, T1 will obtain distinct values at different time.
A = 20000 (Initially).

E.g.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

148

	y In the above example, when T1 reads the value of A for the second
time, it will read a different value of A because the transaction T2 has
changed the A's value in between first and second read of T1.

	y A real life example of unrepeatable read problems can be considered
as:

During a flight reservation, let's say a customer C1 checks the seat availability
and tries to book a ticket meanwhile suppose another customer C2 booked
the ticket so, when customer C1 reaches to the payment page, it might
happen that C1 will get to read a different value of seat availability.

3)	 Overwriting uncommitted data (write-write conflicts)
	y Write-write conflict problem arises when an update performed by a

transaction (say T1) on a data item is lost due to the update done by
another transaction (say T2).

For example,

T2
(A is incremented its

balance by 4%)

T1
(A Sending ` 50 to B)

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

149

	y This problem is also known as lost-update problem.
	y Consider T1 and T2 are two transactions executed almost at the same

time, and it is already shown in the above figure that operations of
these transaction are interleaved.

	y So, the final value of item A is not going to be correct because
transaction T2 reads the value of A before it is changed by T1 in the
database.

	y This results in loss of the value that is updated by T1.
A = 100 → A = 50 → A = 104

4)	 Phantom read problem
	y A transaction T1 reads a set of tuples from a table satisfying the

condition given in an SQL query.
	y Now, consider another transaction T2, which inserts a new tuple into

the table satisfying the same condition given in the same SQL query
present in the transaction T1.

	y T1 repeats the same query again, then T1 will result in a row that is
not present previously (phantom).

	y This situation is known as the phantom read problem.

For example,
T1 T2

(Here we can see SELECT is executed twice, the second time we get
additional row.)

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

150

Grey Matter Alert!

Hey learners!!
Do you have any idea about the incorrect summary problem?
Now, we will study the incorrect summary problem with an example.
	y Suppose one transaction calculating an aggregate summary on different database

items.
	y While some of these items are updated by other transactions, incorrect summary

results can reflect as some values might be calculated by aggregate function before
updating their values and some after updating their values.
For example, let's say we wish to sum up the values of K, X and Y.
 K = 50, X = 100, Y = 200

T1 T2

The sum of K = 50, X = 100, Y = 200 supposed to be 350. But after updating of values
of X sum will be (50 + 600 + 200) = 850, if again T1 tries to increase values of Y by 200
summary will be different.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

151

	y Activities like when a transaction starts, ends, aborts or commits must
be tracked by the system so that recovery can be possible.

	y Following operations are tracked by the recovery manager:

	y The system keeps a log to monitor all the transaction operations so
that later it can retrieve all those information in case of any failure.

Commit point of a transaction
	y A transaction is said to be reached its commit point if all the operations

of a transaction execute successfully and are reflected in the log.

Rack Your Brain

T1 T2

The following given schedule is suffering from:
1)	 Lost update problem		 2) Unrepeatable read problem
3)	 Both 1) and 2)			 4) Neither 1) nor 2)

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

152

4.3 SCHEDULE

Definition

'When transactions are executing concurrently in an interleaved manner,
then the order of execution of operations from any of the various
transaction is known as a schedule'.

	y We can represent a schedule consisting of n transactions as T1,T2, …, Tn.
	y Interleaving of operations between the transaction is allowed in any

schedule.

Note:

Suppose there are two transactions T1 and T2 that have to perform m and
n number of operations respectively, then total number of possible

schedules +
=

(m n)!
m! n!

Note:

We will use shorthand notation R, W, C and A for the operation read_item,
write_item, commit and abort, respectively, in any schedule.

Serial schedule

Definition

'If the operations of each transaction are executed consecutively,
then the schedule is known as serial schedule'.

Problem with serial schedule
	y The main problem with serial schedule is that it restricts the interleaving

of operations and thus also limits concurrency.
	y The serial schedule also leads to the wastage of processing time of the

CPU.
	y It also starves transactions. For example, if a transaction T1 is quite

long, another transaction has to wait for T1 to complete its operations.
	y Thus, the serial schedule is not good in practice.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

153

Note:

In the serial schedule, transaction should be either T1 followed by T2 or
T2 followed by T1.

Non-serial schedule

Definition

'A schedule S is non-serial, if the operations of each transaction
T participating in the schedule, are interleaved or not executed
consecutively'.

Note:

	y At a time only one transaction is active in serial schedule.
	y In serial schedule, next transaction is performed only when an active

transaction is committed.
	y 'There are n! different valid serial schedules are possible for a set of

n transactions'.
	y Consistency is always guaranteed if transaction is executing serially.

Rack Your Brain

Find the number of serial schedules possible when three transactions
executing?

Example of serial and non-serial schedule
	y Let us consider the current values of accounts A and B are ₹ 1500 and

₹ 2500, respectively.
	y Consider the following schedule where T1 is followed T2:

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

154

T1 T2

	y The final value of accounts A and B, after the execution is ₹ 1160 and ₹
2840, respectively.

	y Hence, total amount of money in accounts A and B remain same after
the execution of both transactions.

	y Another serial schedule is also possible, i.e. T2 followed by T1.

T1 T2

	y In this case also, the sum A + B is same and the final values in the
accounts A and B are ₹ 1150 and ₹ 2850, respectively.

	y But consider an another non-serial schedule as shown below.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

155

T1 T2

	y After the execution of this schedule, we will get final values of accounts
A and B are ₹ 1450 and ₹ 2790 respectively.

	y Thus, the sum of amount in account A and B is going to increase by ₹
240 and the final state is inconsistent.

Note:

	y It is the responsibility of concurrency control component of a database
system to make sure that after the execution of any schedule, the
database should remain in consistent state.

Complete Schedule

Definition

'A schedule S of n transactions T1, T2, …, Tn is said to be a complete
schedule if the following condition hold:
The last operation of each transaction is either commit or abort
operation'.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

156

Example:

T1 T2

4.4 SERIALIZABILITY
Introduction:

Definition

'A property that tells about the correctness of the schedule when a
concurrent transactions are executing'.

Uses of serializability
To maintain the data item in a consistent state.
Serializable schedule

Definition

'A transaction schedule is serializable if its outcome is equal to the
outcome of its transactions executed serially'.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

157

Note:

	y A schedule that is not equivalent to any one of the serial schedule is
known as a non-serial schedule.

Result equivalent schedule
Two schedules are known as result equivalent if the final state of the
database comes out to be the same after execution.
Example
Assume initially,
	 X=2
	 Y=5
Given below are two schedules. Detect if they are equivalent or not with
regard to the results.

T1 T2 T2 T2

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

158

T1 T2

Thus schedule S1 which is serial schedule produces the output X = 21 and
Y = 10 and non-serial schedule S2 also produces the final output same as
S1, i.e.
X = 21 and Y = 10, thus both are result equivalent schedule but final output
of S3 is different. It produces output X = 11 and Y = 10, thus S3 is not result
equivalent to S1 or S2.

Based on serializability

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

159

Conflict serializability
	y Let us consider a schedule S where Ii and Ij are the two consecutive

operations belongs to transactions Ti and Tj respectively. Here (i ≠ j).
	y Suppose operation Ii and Ij is referring to different data items, then Ii and

Ij can be swapped without affecting the outcomes of any instruction in
given schedule.

Note:

W(A) denotes write operation on item A.

	y When two operations refer to the same data item, order of those
operation matters.

	y Conflict operations possible are:
			 Ti		 Tj

			 R(A)	 ……….	 W(A)
			 W(A)	 ……….	 R(A)
			 W(A)	 ……….	 W(A)
	 Operation	 R(A)	 ……….	 R(A) is non-conflicting

Conflict equivalent

Definition

'Two schedules are said to be conflict equivalent if the order of any
two conflicting operations is the same in both schedules'.

	y Two operations op1 and op2 are conflict operations if
i)	 op1 and op2 are atomic operations of distinct transactions.
ii)	 op1 and op2 are operated on the same data item.
iii)	 Either of op1 or op2 must be a write.

	y Conflict equivalence establishes conflict serializability.
	y 'A schedule S is known to be conflict serializable if it is conflict equivalent

to one of the serial schedule'.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

160

E.g.
T1 T1 T2 T2

Conflicts:	R1(A) → w2(A)		 Conflicts:	 R1(A) → w2(A)
		 w1(A) → R2(A)				 w1(A) → R2(A)
		 w1(A) → w2(A)				 w1(A) → w2(A)
Therefore S1 is conflict equivalent to S2.

SOLVED EXAMPLES
			 Identify the given schedules are conflict equivalent (or) not?
			 S1: R1(A) w1(A) R2(A) w2(A) R1(B) w1(B) R2(B) w2(B)
 			 S2: R1(A) w1(A) R1(B) w1(B) R2(A) w2(A) R2(B) w2(B)

T1 T1 T2 T2

Conflicts operations in S1:	 Conflicts operations in S2:
	 R1(A) → w2(A)		 R1(A) → w2(A)
	 w1(A) → w2(A)		 w1(A) → w2(A)
	 w1(A) → R2(A)		 w1(A) → R2(A)
	 R1(B) → w2(B)		 R1(B) → w2(B)
	 w1(B) → w2(B)		 w1(B) → w2(B)
	 w1(B) → R2(B)		 w1(B) → R2(B)

Q1

Sol:

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

161

	y Here, as we can see all the conflicts are occurring in the same order in both schedules
are same.

	y Thus, schedule S1 which is a non-serial schedule is conflict equivalent to serial schedule
S2.

	y Therefore, schedule S1 is a conflict serializable schedule.
Consider the transactions T1, T2 and T3 and the schedules S1 and S2 given below:

Previous Years’ Question

T1:	 r1(x) ; r1(z) ; w1(x) ; w1(z)
T2:	 r2(x) ; r2(z) ; w2(z)
T3:	 r3(x) ; r3(x) ; w3(y)
S1:	 r1(x) ; r3(y) ; r3(x) ; r2(y) ; r2(z) ; w3(y) ; w2(z) ; r1(z) ; w1(x) ; w1(z)
S2:	r1(x) ; r3(y) ; r2(y) ; r3(x) ; r1(z) ; r2(z) ; w3(y) ; w1(x) ; w2(z) ; w1(z)
Which of the following statements about the schedules is TRUE?
1)	 Only S1 is conflict-serializable
2)	 Only S2 is conflict-serializable
3)	 Both S1 and S2 are conflict serializable
4)	 Neither S1 nor S2 is conflict serializable
Sol: 1)� (GATE-2014, Set-03)

How to test conflict serializability for a given schedule
	y Precedence graph helps to ascertain if a particular schedule is conflict serializable or

not.
�	 A precedence graph is based on read and write operations.

Note:

Hey learners!!
Do you have any idea about the precedence graph (Serialization graph)?
Let us read the definition of the precedence graph.
	y Definition: 'Precedence graph (Serialization graph) is a directed graph

G = (V, E) that consists of a set of nodes V = {T1, T2, …, Tn} and a set of
directed edges E = {e1, e2, …, em}'.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

162

Algorithm
Following are the steps to draw serialization (precedence) graph:

� If there is no cycle present in the precedence graph, it means the schedule
 	 is conflict serializable.

Note:

Hey Learners!!
The schedule S may or may not be conflict serializable if cycle is present
in the precedence graph.

Grey Matter Alert!

(Ti → Tk), (Tk → Tp), (Tp → Tj), (Tj → Ti) is a cycle in a directed graph.

Note:

	y Topological sorting is used to obtain the serializability order of any
transaction.

	y We can obtain more than one possible linear order using topological
sorting.

Example: Identify if the given non-serial schedule S is conflict serializable?
T1 T2

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

163

Identify the following schedule is conflict serializable or not?

For the provided schedule, the precedence graph is computed. It will deter-
mine if that schedule is conflict serializable or not.
1)	 Transactions T1, T2 and T3 represent the node of the graph.
2)	 Conflict operations:

SOLVED EXAMPLES

Q2

Sol:

Sol: We will check whether this non-serial schedule is conflict serializable or not using
precedence graph.

I)	 Transactions T1 and T2 represents node of precedence graph.
II)	 Conflict operations are represented by edges.
	 The conflicting operations are:
	 R1(A) → W2(A)
	 W1(A) → R2(A)
	 W1(A) → W2(A)
	 R1(B) → W2(B)
	 W1(B) → W2(B)
	 Which are from transactions T1 to T2. There are no conflicts from T2 to T1.

So, serialization graph has no cycle. Thus, the given non-serial schedule S is conflict
serializable.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

164

So, the precedence graph will be:

There is non-existence of a cycle in the above serialization graph, we obtained. So,
the given schedule is conflict serializable. Thus, the possible serial schedule that
follows from the topological sorting of the obtained serialization graph:

	 T3 → T1 → T2

Test whether the following schedule is conflict serializable or not.Q3

We will first check using precedence graph whether the given schedule is con-
flict serializable or not.
1)	 T1, T2, T3, T4 represents node of the graph.
2)	 Conflict operations are represented by edges:
	 W1(B) → W2(B): Edges from T1 to T2

	 R3(A) → W2(A): Edges from T3 to T2

	 R4(A) → W2(A): Edges from T4 to T2

	 R3(B) → W2(B): Edges from T3 to T2

	 W1(B) → R3(B): Edges from T1 to T3

Sol:

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

165

Previous Years’ Question

Let ri(z) and wi(z) denote read and write operations, respectively, on a data item z by a
transaction Ti.
Consider the following two schedules:
S1:	 r1(x) r1(y) r2(x) r2(y) w2(y) w1(x)
S2:	r1(x) r2(x) r2(y) w2(y) r1(y) w1(x)
Which one of the following options is correct?
1)	 S1 is conflict serializable and S2 is not conflict serializable.
2)	 S1 is not conflict serializable and S2 is conflict serializable.
3)	 Both S1 and S2 are conflict serializable.
4)	 Neither S1 nor S2 is conflict serializable.
Sol: 2)� (GATE-CSE-2021, Set-01)

View serializability
Consider two schedules S1 and S2 having the same set of operation.

		

	 So, we will get precedence graph as:

The above graph contains no cycle. Therefore, Conflict serializable.
Possible Serialized schedule after applying topological sort:
1.	 T1 → T3 → T4 → T2		 2. T1 → T4 → T3 → T2	 	 3. T4 → T1 → T3 → T2

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

166

Note:

When a transaction performs a write operation on any data item (say A)
without any prior read. It is known as blind write.

Note:

The condition for a schedule to achieve view serializability is: It should be
viewed equivalent to either of the realizable serial schedules.

E.g.	 Consider three transactions: T1: r1(A) ; w1(A) ; T2: w2(A) ; and T3: w3(A);
	 The schedule S: r1(A) ; w2(A) ; w1(A) ; w3(A) ; C1 ; C2 ; C3 ; where blind

writes are W2(A) and W3(A).

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

167

Note:

i) View serializability is a necessary condition for a schedule to be
 conflict serializable but opposite is not true.

Fig. 4.2 Diagrammatic Representation of Conflict
Serializable and View Serializable Schedule

Example:	 Determine if the following schedules are view equivalent or not.

T1 T1 T2 T2

i)	 If T1 undergoes initial read operation on any data item X in S1, it should
definitely read the initial value of X in S2 also.

ii)	 W1(A) → R2(A)
	 W1(B) → R2(B) holds for both schedule.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

168

Q1

iii)	 In either of the schedules, final write on data item A and B is performed by T2.
	 Thus, schedule S2 is view serializable to S1.

SOLVED EXAMPLES
		 Check whether the given schedule is view serializable or not.

Sol: To find out whether a given schedule is view serializable or not, first, we will find
out whether a given schedule is conflict serializable or not, because
we know if a schedule is conflict serializable then schedule is also view serializable.
Conflict serializability check:

	y The above graph contains cycle, thus it is not conflict serializable.
	y Check if there is any blind write, if no blind write then it is not view serializable

schedule.
	y In the given schedule blind write is present.
	y So, now we will test for view serializability for that we will draw polygraph.
	y To draw polygraph, following steps are required:

i)	 T1, T2, T3 represents nodes of the graph.
ii)	 T1 will execute first, as T2 is depending on T1 and T3 is depending
on T1.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

169

	y T3 should be the last one to execute, based on the writes.
	y We will get the following graph:

So, the serial schedule we will get is: T1 → T2 → T3.
(Topological order from topological sort.)
Thus the given schedule is view serializable.

Consider the following given schedule:

Is it view serializable schedule?

First, we will find out whether a given schedule is conflict serializable or not.
For that we will draw precedence graph.

	y A cycle is present in the above graph. So, it is not conflict serializable.
	y Check if there is any blind write, if no blind write then it is not view

serializable schedule.
	y In the given schedule blind write is present.
	y Now, we will test for view serializable, so we will draw polygraph.

T1 has to start first as read operation is performed by T1 and since final
write operation is also performed by T1. So, there will be an edge from T2 to
T1. It means graph is having cycle.
\	 We can conclude that the given schedule is neither conflict serializable
nor view serializable.

Q2

Sol:

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

170

Is the following given schedule view serializable?
T1: R(x), T2: R(y), T1: W(x), T2: R(y), T3: W(y), T1: W(x), T2: R(y)

T1 T2 T3

First, we will draw a precedence graph to check conflict serializable schedule:
I)	 T1, T2, T3 represents nodes of a graph.
II)	 All conflict operations represent edges of precedence graph.

	y Thus, the given schedule is not a conflict serializable schedule.
	y We will check if there is any blind write, if no blind write then it is not view

serializable schedule.
	y In the given schedule blind write is present.
	y Now, draw polygraph to check view serializability

As T1 is the only transaction that performs read and write on variable x so the initial
we are ignoring T1.
T2 has to start first as initial read operation is performed by T2 on variable y, there
will be an edge from T2 to T3.
Due to updated read dependency from T3 to T2, there will be an edge from T3 to T2.
So, there is cycle in the graph. So, the given schedule is not view serializable.

Q3

Sol:

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

171

Rack Your Brain

How many conflicting operations does schedule S have _______?
Schedule S: r1(M) w2(M) r2(M) w1(N) r2(N) w2(N)

4.5 BASED ON RECOVERABILITY
	y To ensure the atomicity of the transaction, we undo the effect of the

transaction whenever it fails.
	y Also if a transaction Tj is depending on Ti that needs to be aborted.
	y We need to put some restrictions on the schedule to achieve this.

Irrecoverable schedule

T1 T2

	y The above given schedule is not recoverable (irrecoverable) schedule
since commit(T2) happens before commit(T1).

	y Now suppose T1 fails before it commits. T2 has to undergo abort.
	y But abort(T2) is not possible as it has already undergone commit

operation.
	y So, it is a situation where it is not possible to recover from the

failure of T1.

Recoverable schedules
'A schedule where for each pair of transactions Ti and Tj the commit
operation of Ti must appear before the commit operation of Tj if Tj reads
a data item previously written by Ti'.
	y Given below is an example depicting instances of recoverable and

irrecoverable schedules:

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

172

T1 T1 T2 T2

Note:

Hey Learners!!
Do you know what a recoverable schedule guarantees?
Well, it guarantees that a transaction does not need to roll back once it
commits.

Ensuring recoverability of schedule
T2 should commit only after T1 commits if T2 depends on T1.
If the above condition is satisfied then it is guaranteed to have a recoverable
schedule.
Example:	 The below given schedule is an example of recoverable schedule.

T1 T2

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

173

Note:

A recoverable schedule may have dirty read problem.

Note:

Set of the recoverable schedules are subset of set of all possible
schedules.

Cascading Aborts
If one transaction failure causes multiple transactions to roll back, it is
called as cascading roll back (or) cascading aborts.

Example:
T1 T2 T3

	y Here, rollback of T1 will result in rollback of T2 and rollback of T2 will
result in rollback of T3 which is cascading rollbacks.

	y It is recoverable schedule but due to cascading rollbacks, other problem
arises like less throughput, more waiting time.

	y Just because of rollback of T1 here T2, T3, T4 all needs to rollback.
	y Thus, cascading rollbacks must be avoided.

Cascadeless schedule
Cascading rollback is not desirable as they undo a good amount of work.
So, it is better if we can avoid the cascading rollback.
Schedule that is restricted in such a way that cascading rollback cannot
occur is known as cascadeless schedules.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

174

Definition

'A cascadeless schedule is one, where for each pair of transactions
Ti and Tj such that Tj reads a data item previously written by Ti, the
commit operation of Ti appears before the read operation of Tj'.

Note:

Hey learners!!
Do you know that a cascadeless schedule is a recoverable one?
See the below example.
Example:

T1 T2 T3

Strict schedule
'Strict schedules are those where a value written by a transaction cannot
be read or written by another transaction until the previous transaction
commits (or) aborts'.
Example:

T1 T2

Here, S is a strict schedule, i.e. it is both cascadeless as well as recoverable.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

175

Note:

Set of all cascadeless schedule are subset of set of recoverable schedule.

Note:

Set of all strict schedule are subset of set of all cascadeless schedule.

Fig. 4.3 Different Type of Schedules Based on Recoverability

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

176

Database recovery techniques
	y Failures can occur due to system crashes or transaction errors, etc.
	y There are few techniques that we can use to recover from these failures.
	y The recovery process uses commit point, system log concepts to

recover from any failure.

Checkpointing in the system log
	y 'Checkpointing is a type of entry in the log'.
	y Generally a record is written into the log periodically and all the updates

are recorded on the disk during checkpointing.
	y So, transactions that are committed in the log before checkpointing

needs not to execute their WRITE operation if any system crash occurs.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

177

	y Usually, log records are denoted as:
	y <Ti, start> × Transaction Ti has started.
	y <Ti × Xj, V1, V2> × Transaction Ti has performed a write on data item Xj.

Before the write, Xj had value V1 and after the write Xj will have value V2.
	y <Ti, commit>, Transaction Ti has committed.
	y <Ti, abort>, Transaction Ti has aborted.

Why we need checkpoints?
1)	 It is very time consuming to search the entire log in case of any failure,

thus it is always a good idea to maintain checkpoints in the log.
2)	 Checkpoint also increase the throughput of the system as we need

not to waste time in a recovery of a transaction in case if we need to
execute that transaction again due to any reason.

UNDO/REDO recovery algorithm with checkpoints
1)	 There are two list of transactions that needs to be maintained by the

system:
	 i)	 The active transactions
	 ii)	 Committed transactions since the last checkpoint.
2)	 Perform UNDO for every write operation of the uncommitted/active

transaction.
3)	 Perform REDO for every write operation of a committed transaction.
Example: Consider the given checkpointing protocol and the operations
given in the log.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

178

Now, if crash occurs,the system will try to recover. The undo and redo
operations are as follows:
Undo list: T2, T4 (It means transaction T2 and T4 will be undone.)
Redo list: T3 (It means transaction T3 will be redone.)

4.6 CONCURRENCY CONTROL TECHNIQUE
	y We know that isolation is one of the important properties that a

transaction needs to follow.
	y It is mandate while concurrent implementation of transactions to

preserve isolation property.
	y A concurrency control technique is used to achieve this.

Note:

Concurrency control protocols guarantee serializability.

4.7 LOCK-BASED PROTOCOLS
	y If we follow mutual exclusion to access the data items, then we can

ensure the serializability.
	y It means any other transaction cannot modify the data items while the

same data item is being accessed by some other transaction.
	y We use lock based protocols for this purpose.
	y A transaction can have access to a data item if any lock on that specific

item is currently held by that transaction.

Definition

'A lock is a variable associated with a data item that describes the
status of the item with respect to possible operations that can be
applied to it'.

Lock
	y There prevails two distinct locking modes: shared and exclusive.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

179

	
Fig. 4.4 Relationship Between Shared and Exclusive Lock

	y A transaction acquires a lock in a particular mode based on the types
of operation it wants to perform on the data item Q.

	y The concurrency control manager is going to grant these locks to a
transaction.

	y After getting the locks, a transaction can proceed.

Note:

	y Figure 4.4 represents that a shared mode is compatible with shared
mode but it is not compatible with exclusive mode.

	y The instruction lock-S(A) imparts shared lock on data item, A.
	y Similarly, To get a exclusive lock on data item A, we have to use lock-

X(A) instruction.
	y To unlock a data item A, we have to use unlock(A).
	y Locking a data item by a transaction is mandate to have access on it.
	y If a transaction has acquired an incompatible lock on a data item, no

other lock can be provided to another transaction to access the same
data item until that lock has been released. In this case, another
transaction has to wait.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

180

Difference between shared and exclusive lock
Shared lock imparts read access on a specific data item. However, exclusive
lock mode imparts both read and write grants to a transaction on a targeted
data item.
Example:	 Folks!!
	 Consider there are two accounts called A and B.
	 Transactions T1 and T2 can access these two accounts.
	 Suppose transaction T1 transfers rs. 50 to account A from account B.
	 Total amount (A+B) is displayed by transaction T2.

Note:

In the above example, L represents lock, R represents read_item, W
represents write_item and U represents unlock. We will consider these
notation further also.

	y Let the value of A and B is ₹ 100 and ₹ 200 initially. If we execute T1, T2
serially then T2 will display A + B = ₹ 300.

	y But if these transactions are executed concurrently, then there may be
the case possible such that T2 will display incorrect result.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

181

Example:
T1 T2

	y Releasing the lock too early in the simple locking case will lead to
inconsistent result.
(T2 produces an inconsistent result as T1 is unlocking the data items
too early.)

	y Simple locking can also lead to an undesirable situation.
Example:

T1 T2

Here, the above example is leading to deadlock as T2 wants a shared lock
on B but T1 holds an exclusive lock on B.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

182

Similarly, T1 wants an exclusive lock on data item A that is held by T2 in
shared mode. Thus, T1 is waiting for T2 to unlock A and T2 is waiting for T1
to unlock B.

Grey Matter Alert!

Hey Learners!!
Do you know what happens when a deadlock is present?
When none of the transactions is able to proceed with its normal execution. This
situation is known as deadlock.

Note:

If deadlock persists, either of the transactions must undergo
roll-back/abort by the system.

Drawbacks of simple locking
i)	 It leads to an inconsistent result.
ii)	 Simple locking can also lead to deadlock.
iii)	 Simple locking does not guarantee serializability.
Example of simple locking schedule that does not guarantee serializability
is as follows:

T1 T2

This is not conflict serializable schedule as to when we will draw precedence
graph, cycle will be present.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

183

Conflict operations are:
1)	 W1(A) → R2(A)
2)	 R2(A) → W1(A)
How to grant locks?
	y When a transaction asks for a lock on a data item in a particular mode

and there is no other transaction that holds a lock on the same data
item in a conflicting mode, then a lock can be granted.

	y Starvation is a situation where a particular transaction does not make
progress as every time a lock is granted to other transaction.

Two phase locking protocol
	y Two phase locking protocol always guarantee serializability.
	y In 2PL, locking and unlocking is done in 2 phases:

1)	 Growing phase: 'A transaction can acquire new locks on items
but no other lock can be released'. It is also known as expanding
phase.

2)	 Shrinking phase: 'During this phase a transaction can release
existing lock but cannot acquire new locks'.

Fig. 4.5 Graphical Representation of 2PL

Note:

Initially, a transaction obtains locks, and it is said to be in growing phase.
After that, a transaction enters the shrinking phase.
Once a transaction initiates lock release phenomenon, it cannot generate
any further lock acquisition requests.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

184

T1 T2 T3

Note:

If two phase locking protocol is followed by all the transactions of a
schedule then it is definitely a serializable schedule.

Note:

Same as basic 2PL, 2PL with lock conversion gives only conflict serializable
schedule.

Grey Matter Alert!

Lock upgradation Lock downgradation

	y Upgradation is allowed only in the growing phase whereas down
gradation is allowed only in the shrinking phase.

	y In the following example, W(A) and W(B) will not be allowed since Ti has
exclusive lock.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

185

Ti Tj

So, how can we determine the order in which serializability is obtained?
For that, there is something called a lock point.

Lock point

Definition

Point at which a transaction gets its final lock.
Lock point is used to determine the order of the transactions.

Drawbacks of two-phase locking protocol
1)	 2PL may leads to cascading rollback.
2)	 Deadlock might be possible.
3)	 Starvation is also possible in 2PL.
	 Example:	 Consider a schedule S such that

T1 T2

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

186

	y Example detecting deadlock.

T1 T2

	y Here, T1 is having exclusive lock on data item B and is requesting
exclusive lock on data item A.

	y Similarly, T2 is having shared lock on data item A and requesting shared
lock on data item B, which clearly says that deadlock is present.

	y Which clearly says that deadlock is present.
	y There are three types of two-phase locking.

Strict 2PL
	y Strict 2PL guarantees strict schedules.

Definition

'It is a variation of 2PL, a transaction T does not release any of its
exclusive (read and write) locks until it commits or aborts'.

	y So, any other transaction cannot read or write an item written by T until
T has committed.

	y It leads to a recoverable schedule.
	y Strict 2PL ensure that a schedule is:

1)	 Recoverable schedule		 2)	 Cascadeless schedule

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

187

	y The advantage of strict 2PL is that it avoids cascading rollbacks.
	y Strict 2PL is not deadlock free.

Example:
T1 T2

(Since lock on A is already given to T1, it will never be granted to T2, that is
T2 will not able to read/write same data item until transaction T1 that has
written the data item performs commit.)

Note:

Hey Learners!!
Do you know how can we decide the order of transactions in the strict
2PL?
Well, the order of transactions is decided by the sequence of lock points.

Whatever final order, we get is equivalent to serial schedule.

Rack Your Brain

Strict 2PL protocol guarantees:
1)	 Recoverable schedule
2)	 Cascadeless schedule
3)	 Strict schedule
4)	 All of the above

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

188

Previous Years’ Question

Consider the following database schedule with two transactions T1 and T2.
S = r2(x); r1(x); r2(y); w1(x); r1(y); w2(x); a1 ; a2

Where ri(z) denotes a read operation by Ti on a variable z and ai denotes an abort by
transaction Ti.
Which one of the following statements about the above schedule is TRUE?
1)	 S is non-recoverable
2)	 S is recoverable, but has a cascading abort
3)	 S does not have a cascading abort
4)	 S is strict
Sol: 3). � (GATE-2016, Set-2)

Rigorous 2PL
	y Rigorous 2PL is more restrictive variation of strict 2PL.

Definition

'In rigorous 2PL, in addition to locking being in 2 phase, a transaction T
does not release any of its locks (shared or exclusive) until it commits
or aborts'.

	y Rigorous 2PL also guarantees strict schedules.

Conservative 2PL

Definition

In conservative 2PL, all the locks acquired will not be released until
transaction commits.

	y It says that once the transaction begins it is in its shrinking phase and
then transaction is in its expanding phase until it finishes.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

189

	y Advantages of conservative 2PL:
1)	 Conservative 2PL gives strict schedules.
2)	 It also gives freedom from deadlock.					

	

Note:

Conservative 2PL may lead to starvation.

Fig. 4.6 Relation Between Strict, Rigorous and Conservative 2PL

Deadlock

Definition

'Deadlock is said to occur when each transaction T in a set of two or
more transactions is waiting for some item that is locked by some
another transaction T' in the set'.

4.8 MULTIPLE GRANULARITY
	y It is better if we can group several data items and consider them as

an individual units instead of considering each individual data item on
which we will perform synchronisation.

Example: Let's make an assumption that a transaction T1 demands access
over the whole database utilising the concept of locking protocol. Each
item in the database must be locked by Ti. This process is time consuming.
In place of this, we can allow Ti to issue a single lock acquisition plea.
Differently, if transaction Tj wants to access only few data items, then no
need to lock the entire database.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

190

	y Hence, there exists scope to establish the idea of multiple granularity.
	y We can achieve this by allowing various size data items and by defining

a hierarchy of data granularities.
	y We can represent this hierarchy as a tree.
	y A non-leaf node represents the data associated with its descendants.

Fig. 4.7 Granularity Hierarchy

4.9 TIMESTAMP BASED PROTOCOLS

Note:

If we provide a timestamp to each transaction, then we can prevent
deadlock.
Definition: 'Transaction's Timestamp is a unique identifier assigned to
each transaction'.

	y We assign timestamp to the transaction based on when a transaction
has arrived.
TS (T1) < TS (T2) means transaction T2 comes after T1.

	y The serializabiltiy order can be found using the transaction timestamp.
	y We associate 2 timestamp values with each data item A.

	y Timestamps will get updated if new write or read instruction is executed.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

191

Timestamp ordering protocol
	y We know that timestamp ordering based concurrency control techniques

do not use locks.
Therefore no deadlock will occur.

	y In this protocol any conflicting write or read operation will execute in
timestamp order.

	y If it is not then such an operation is rejected and the transaction will be
rolled back.

Note:

Whenever the concurrency control scheme rolls back a transaction, the
system provides it with a new timestamp and restarts it.

Example:	 Consider a schedule:

	

T1 T2

Suppose TS (T1) = 1 and TS (T2) = 2 then conflicting action R1(A) → W2(A)
is allowed as TS (T1) < TS (T2) but conflicting action W2(A) → W1(A)
is not allowed as transaction having greater timestamp has already
executed. So, it will be rolled back and restarted again with different
timestamp.
Example:	 Consider an example:
Suppose TS (T1) = 1 and TS (T2) = 2 and following schedule is given.

T1 T2

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

192

In this example there is no conflict operation from transaction T1 to T2 but
there is a conflict operation from transaction T2 to T1. Since TS (T1) < TS (T2)
so, conflict operation from T2 to T1, i.e. R2(A) → W1(A) is not allowed. Thus,
this transaction T1 will rollback and restart again with a new timestamp. Let
us say TS (T2) = 2 and TS (T1) = 3.

T2
T1

T2T1 is equivalent serial schedule.

Note:

In basic timestamp order protocol, if there are two conflict operations
that occur in the incorrect order, then we can reject later of the two
atomic operation through abort of the targeted transaction.
So, conflict serializability is secured through timestamp ordering.

Strict timestamp ordering
	y A strict timestamp ordering ensures strict and serializable schedule.

Definition

	y 'In strict timestamp ordering, a transaction T that issues a read_
item (A) or write_item (A) such that TS (T) > write_TS (A) has read
or write operation delayed until the transaction T' that wrote the
value of A has committed or aborted'.

	y The strict timestamp ordering avoids deadlock.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

193

4.10 DEADLOCK HANDLING
There are different ways to handle a deadlock, for example, deadlock
prevention, deadlock detection and recovery.

Deadlock prevention

Note:

There prevails two mechanisms to ascertain deadlock prevention: wait-
die, wound-wait.

Definition

Time-stamp: It is represented as TS(Ti) and used to prevent deadlock.
Transaction timestamp is a unique identifier that is assigned to each
transaction.

1)	 Wait-die
	y If TS (Tm) < TS (Tn), means Tm is older than Tn.

Case 1: When an older (Tm) transaction tries to lock an element that is
already locked by younger (Tn) transaction then the older (Tm) transaction
has to wait.
Otherwise,
Case 2: When younger (Tm) transaction tries to lock an element that is
already locked by older (Tn) transaction then the younger (Tm) transaction
dies.

2)	 Wound wait
	y If TS (Ti) < TS (Tj), means Ti is older than Tj.

Case 1: When an older transaction (Ti) tries to lock an element that is
already locked by younger transaction (Tj) then Ti wounds Tj.
Otherwise,
Case 2: When a younger transaction (Ti) tries to lock an element which
is already locked by older transaction (Tj) then Ti has to wait.
	y In both methods of preventing deadlock, younger of the two

transactions where the deadlock is present, get aborted.
	y Both techniques are deadlock free as no cycle is possible in any of

these techniques.

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

194

Deadlock detection and recovery (wait for graph)

Definition

'In deadlock detection, system checks whether the deadlock exists
or not'.

	y It helps in the detection of deadlock existence.
	y A directed edge will be formed if transaction T1 is waiting to lock an

item that is currently locked by transaction T2.
	y Remove the directed edges from the graph if the lock is released by Tj

on those items for which Ti was waiting.
	y Deadlock is present in the wait for graph if and only if graph has a cycle.

Example: Consider the figure given below:

	

Waiting for
1 2 3

Waiting for
3 2

Waiting for
2 4

Waiting for
4 3

T T ,T

T T

T T
T T

¾¾¾¾¾®

¾¾¾¾¾®

¾¾¾¾¾®

¾¾¾¾¾®

Graph-based protocols
	y There is a graph-based protocol that does not use 2PL.

		 It is also called as tree protocol.
		

Note:

The main advantage of the tree protocol is that we can completely avoid
deadlocks.
	y We only use exclusive locks in the tree protocol.
	y Any data item can be locked at most once by each transaction Ti.
	y These are the following rules:

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

195

1)	 Any transaction, Ti is permitted to submit lock acquisition request on
any data item.

2)	 Ti is permitted to lock data item, X if it has lock grant over parent of X.
3)	 Lock release can occur at any time instant.
4)	 The transaction Ti cannot be granted lock on the same data item after

unlocking it previously.
Example: Consider the given below schedule:

T1 T2 T3 T4

  

Thomas write rule

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

196

Example:	 Schedule are given below:

T1 T2

Here, in Thomas write rule, W2(A) → W1(A) is allowed, no rollback.

Note:

T1 and T2 are transactions such that time stamp of T1 < time stamp of
T2. Then:

Not Allowed Allowed

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

197

Chapter Summary

	y Transaction: A collection of operations that forms a single logical unit of work.
	y ACID properties.

There are 4 ACID properties that a transaction needs to follow:

	y Types of failure in a system: Transaction failure, system crash, disk failure, power
failure, software crash, natural hazards, etc.

	y Transaction states: There are five states for a transaction namely active, partially
committed, failed, committed, aborted through which a transaction goes in its
lifetime.

	y Transaction processing system allows multiple transaction to run concurrently.
	y Concurrency problems in transactions:

1)	 Reading uncommitted data (W-R)
2)	 Unrepeatable read (R-W)
3)	 Overwriting uncommitted data (W-W)
4)	 Phantom read problem

	y Serial schedule: Serial schedule are those schedule where operations of each
transaction executes consecutively.

	y Complete schedule: When the last operation of each transactions is commit or
abort the operation. That schedule is known as complete schedule.

	y Serializability: Serializability is a property that indicates the correctness of the
schedule when a concurrent transactions are executing.

	y Types of schedule based on serializability:
1)	 Conflict serializable schedule.
2)	 View serializable schedule.

	y Types of schedule based on recoverability:
1)	 Irrecoverable schedule
2)	 Recoverable schedule

1)

2)

3)

4)

Tr
an

sa
ct

io
n

an
d

C
on

cu
rr

en
cy

 C
on

tr
ol

 T
ec

hn
iq

ue
s

C
ha

pt
er

 4

198

3)	 Cascade rollback recoverable schedule
4)	 Strict recoverable schedule

	y Recoverable schedules ensures that, once a transaction commits, it never rollbacks.
	y If one transaction failure causes multiple transactions to rollback, it is called as

cascading rollback.
	y A serializability order of the transactions can be obtained through topological

sorting of precedence graph.
	y There are different type of concurrency control techniques such as lock-based

protocols, timestamp based protocol.
	y Deadlock: When none of the transactions is able to proceed with its normal

execution, this situation is known as deadlock.
	y Two techniques to handle deadlock:

1)	 Deadlock prevention (wait-die and wound wait)
2)	 Deadlock detection and recovery

	y To prevent deadlock, there is a concept called as transaction timestamp denoted
as TS (Ti) which is a unique identifier assigned to each transaction.

	Notes_Ch-04_Transaction and Concurrency Control Techniques (29-11-2021)

