
UNIT–1: Fundamentals of Web Application Security

1. History of Software Security

• Early software focused mainly on functionality, not security.

• Rise of internet → increase in cyber-attacks (worms, viruses, SQL injection, etc.).

• Security evolved from reactive patches to proactive secure coding.

2. Recognizing Web Application Security Threats

• Threats include: malware, phishing, SQL injection, XSS, session hijacking, broken access

control.

• Attackers exploit vulnerabilities in code, configuration, or user behavior.

3. Web Application Security

• Protecting web apps from attacks by securing code, server, and data.

• Includes: secure coding, patching, encryption, authentication, and access control.

4. Authentication and Authorization

• Authentication: Verifies user identity (passwords, OTPs, biometrics).

• Authorization: Determines what authenticated users can access (role-based access).

5. Secure Socket Layer (SSL) & Transport Layer Security (TLS)

• Encryption protocols that secure communication between client and server.

• Provide confidentiality, integrity, and authenticity using certificates.

6. Session Management

• Maintains user state after login using session IDs or cookies.

• Secure session handling prevents hijacking, fixation, and replay attacks.

7. Input Validation

• Ensures that user input is filtered and sanitized.

• Prevents major attacks like SQL Injection, XSS, Command Injection.

UNIT–2: Secure Development and Deployment

1. Web Application Security

• Developing apps with security principles from design to deployment.

• Includes secure coding, encryption, least privilege, and secure configurations.

2. Security Testing

• Evaluates application vulnerabilities using tests like SAST, DAST, fuzzing.

• Helps detect weaknesses before deployment.

3. Security Incident Response Planning

• A predefined plan for detecting, analyzing, and responding to attacks.

• Phases: preparation, detection, containment, eradication, recovery, lessons learned.

4. Microsoft Security Development Lifecycle (SDL)

• A secure development process with phases: requirements, design, implementation,

testing, release, response.

• Focuses on threat modeling and secure coding guidelines.

5. OWASP CLASP (Comprehensive Lightweight Application Security Process)

• A set of security practices integrated into SDLC.

• Focuses on roles, responsibilities, and vulnerability prevention.

6. Software Assurance Maturity Model (SAMM)

• Framework to measure and improve software security practices.

• Four domains: Governance, Construction, Verification, Deployment.

UNIT–3: Secure API Development

1. API Security

• Protecting APIs from unauthorized access, data leakage, and abuse.

2. Session Cookies

• Store session IDs.

• Should be secure, HttpOnly, and have proper expiration.

3. Token-Based Authentication

• Uses tokens (JWT, OAuth tokens) instead of sessions.

• Easier for mobile and distributed systems.

4. Securing Natter APIs (REST APIs)

• Prevent API abuse and vulnerabilities using:

o Security controls (input validation, authentication, access control).

o Rate limiting to prevent DDoS/burst requests.

o Encryption (HTTPS).

o Audit logging for monitoring API access.

5. Securing Service-to-Service APIs

• API Keys for basic identification.

• OAuth2 for delegated authorization between services.

6. Securing Microservice APIs

• Service Mesh (e.g., Istio) provides authentication, traffic control, encryption.

• Lock down network connections and restrict ports.

• Validate all incoming requests to microservices.

UNIT–4: Vulnerability Assessment & Penetration Testing

1. Vulnerability Assessment Lifecycle

• Steps: Asset identification → scanning → analysis → remediation → verification →

reporting.

2. Vulnerability Assessment Tools

• Cloud-based scanners → scan cloud apps (e.g., Qualys).

• Host-based scanners → scan OS and installed software.

• Network-based scanners → scan network devices and ports.

• Database-based scanners → check for insecure DB configurations.

3. Types of Penetration Tests

• External Testing → simulates outside attacker.

• Web Application Testing → tests app-specific vulnerabilities.

• Internal Penetration Testing → simulates insider attacks.

• SSID/Wireless Testing → tests Wi-Fi networks.

• Mobile Application Testing → tests mobile apps for security flaws.

UNIT–5: Hacking Techniques and Tools

1. Social Engineering

• Manipulating people to reveal confidential information (phishing, pretexting).

2. Injection

• Attacks that insert malicious commands (SQL injection, command injection).

3. Cross-Site Scripting (XSS)

• Injecting malicious scripts into web pages viewed by users.

• Types: Stored, Reflected, DOM-based.

4. Broken Authentication & Session Management

• Weak login and session controls allow attackers to hijack accounts.

5. Cross-Site Request Forgery (CSRF)

• Forces a logged-in user to perform unwanted actions (like transactions).

6. Security Misconfiguration

• Incorrect server/application settings create vulnerabilities (open ports, default

credentials).

7. Insecure Cryptographic Storage

• Storing sensitive data without proper encryption or hashing.

UNIT–6: Failure to Restrict URL Access & Tools

1. Failure to Restrict URL Access

• Occurs when users access unauthorized pages via direct URL access.

• Prevented using authorization checks on each page.

2. Tools

• Comodo → Web security, SSL, malware scanning.

• OpenVAS → Open-source vulnerability scanner.

• Nexpose → Vulnerability management and risk scoring.

• Nikto → Web server scanner for outdated software and config issues.

• Burp Suite → Web penetration testing tool for scanning and intercepting traffic.

 UNIT–1: Fundamentals of Web Application Security (10 MCQs)

1. Software security initially focused on which of the following?

A. Secure coding

B. Application functionality

C. Access control

D. Threat modeling

Answer: B

2. Which of the following is NOT a web application threat?

A. SQL Injection

B. Phishing

C. XSS

D. Cloud Storage

Answer: D

3. Authentication means:

A. Giving permissions

B. Identifying a user

C. Encrypting data

D. Managing sessions

Answer: B

4. SSL/TLS provides:

A. Only integrity

B. Only authentication

C. Encryption, integrity, authentication

D. Only authorization

Answer: C

5. Session management mainly uses:

A. Tokens

B. Cookies and session IDs

C. Digital signatures

D. Backups

Answer: B

6. Input validation prevents:

A. Brute-force attacks

B. SQL Injection and XSS

C. Server outages

D. Patch failures

Answer: B

7. Broken access control is related to:

A. Encryption failure

B. Unauthorized resource access

C. Password hashing

D. Logging errors

Answer: B

8. TLS is the updated version of:

A. SSH

B. SSL

C. HTTPS

D. HTTP

Answer: B

9. A web application is secure when:

A. It has a strong UI

B. It is tested and configured securely

C. It uses only HTML

D. It is deployed on cloud

Answer: B

10. Which ensures confidentiality on the web?

A. Session cookies

B. TLS encryption

C. Authorization

D. Caching

Answer: B

 UNIT–2: Secure Development and Deployment (10 MCQs)

1. Security testing is used to find:

A. UI issues

B. Functional errors

C. Vulnerabilities

D. Documentation errors

Answer: C

2. Incident response begins with:

A. Recovery

B. Containment

C. Preparation

D. Analysis

Answer: C

3. SDL model was developed by:

A. IBM

B. Google

C. Microsoft

D. Oracle

Answer: C

4. CLASP is primarily focused on:

A. Hardware testing

B. Lightweight security practices

C. Front-end design

D. User authentication

Answer: B

5. SAMM includes how many domains?

A. 3

B. 4

C. 5

D. 7

Answer: B

6. Threat modeling is done during which SDL phase?

A. Design

B. Deployment

C. Testing

D. Release

Answer: A

7. Verification in SAMM involves:

A. Code writing

B. Testing security

C. Deployment configuration

D. User training

Answer: B

8. Secure coding is part of:

A. Construction phase

B. Governance phase

C. Release phase

D. Monitoring phase

Answer: A

9. Security testing like SAST is done on:

A. Running application

B. Static code

C. Cloud services

D. Network devices

Answer: B

10. Deployment security includes:

A. UI color selection

B. Patch installation

C. Database normalization

D. Python compilation

Answer: B

 UNIT–3: Secure API Development (10 MCQs)

1. REST API communication uses:

A. SSH

B. HTTP/HTTPS

C. STP

D. SMTP

Answer: B

2. Session cookies must be:

A. Visible to JavaScript

B. HttpOnly and Secure

C. Unencrypted

D. Publicly accessible

Answer: B

3. Token-based authentication commonly uses:

A. CSS

B. JWT

C. SQL

D. JSON-only

Answer: B

4. Rate limiting prevents:

A. Data encryption

B. API abuse and DoS

C. HTTPS usage

D. Database indexing

Answer: B

5. Audit logging helps in:

A. Speeding API

B. Monitoring access

C. Reducing encryption

D. Increasing UI quality

Answer: B

6. API keys are used for:

A. User UI design

B. Simple service-to-service authentication

C. Database queries

D. Encryption

Answer: B

7. OAuth2 provides:

A. Session management

B. Authorization delegation

C. Token hashing

D. Password encryption

Answer: B

8. Service Mesh is used in:

A. Monolithic apps

B. Microservices

C. Local storage

D. Browser caching

Answer: B

9. Encryption of API traffic is done using:

A. TLS

B. JSON

C. XML

D. HTML

Answer: A

10. Securing incoming API requests includes:

A. Allowing all IPs

B. Validating tokens

C. Disabling authentication

D. Using plain HTTP

Answer: B

 UNIT–4: Vulnerability Assessment & Penetration Testing (10 MCQs)

1. First step in vulnerability assessment lifecycle:

A. Reporting

B. Analysis

C. Asset identification

D. Remediation

Answer: C

2. OpenVAS is an example of:

A. Host scanner

B. Network scanner

C. Wireless tool

D. Firewall

Answer: B

3. External penetration test simulates:

A. Insider

B. Outsider

C. Admin

D. System user

Answer: B

4. Web application penetration testing focuses on:

A. Cloud architecture

B. Application layer vulnerabilities

C. Physical devices

D. Password length

Answer: B

5. Wireless testing evaluates:

A. RAM size

B. Wi-Fi vulnerabilities

C. Browser cookies

D. SQL databases

Answer: B

6. Database vulnerability scanners detect:

A. Table joins

B. Misconfigurations

C. SSL certificates

D. Session cookies

Answer: B

7. Cloud-based scanners are used for:

A. Offline servers

B. Cloud-hosted apps

C. Desktop apps

D. Mobile phones

Answer: B

8. Internal testing assumes:

A. Public attacker

B. Insider access

C. No access

D. Only admin privileges

Answer: B

9. Remediation means:

A. Finding bugs

B. Fixing vulnerabilities

C. Creating attacks

D. Deleting logs

Answer: B

10. Final step of penetration testing:

A. Scanning

B. Reporting

C. Threat modeling

D. Logging

Answer: B

 UNIT–5: Hacking Techniques and Tools (10 MCQs)

1. Social engineering mainly exploits:

A. Hardware weaknesses

B. Human psychology

C. Network protocols

D. Encryption

Answer: B

2. SQL injection targets:

A. Database queries

B. CSS files

C. Tokens

D. Cookies only

Answer: A

3. XSS affects:

A. Server OS

B. Client browser

C. Network hardware

D. IoT devices

Answer: B

4. Broken authentication results in:

A. UI errors

B. Account compromise

C. Faster login

D. Better performance

Answer: B

5. CSRF forces users to:

A. Change passwords

B. Perform unwanted actions

C. Block sessions

D. Download files

Answer: B

6. Security misconfiguration includes:

A. Strong passwords

B. Default credentials

C. Disabled ports

D. Encrypted storage

Answer: B

7. Insecure cryptographic storage includes:

A. Proper hashing

B. Plain-text password storage

C. Using SSL

D. Tokenization

Answer: B

8. Injection occurs due to:

A. Secure code

B. Sanitized input

C. Poor input validation

D. Token usage

Answer: C

9. XSS allows attackers to:

A. Modify server hardware

B. Steal cookies

C. Install OS

D. Delete RAM

Answer: B

10. CSRF can be prevented using:

A. HTTP only cookies

B. CSRF tokens

C. DNS changes

D. USB firewall

Answer: B

 UNIT–6: Failure to Restrict URL Access & Tools (10 MCQs)

1. Failure to restrict URL access allows:

A. Faster browsing

B. Unauthorized access

C. Better UI

D. Faster caching

Answer: B

2. This tool is used for web app penetration testing:

A. MS Word

B. Burp Suite

C. Notepad++

D. Excel

Answer: B

3. Nikto is primarily used for:

A. Malware removal

B. Web server scanning

C. Antivirus scanning

D. Cloud storage

Answer: B

4. OpenVAS is a:

A. Code editor

B. Vulnerability scanner

C. Backup tool

D. Web server

Answer: B

5. Nexpose provides:

A. UI testing

B. Risk scoring

C. CSS validation

D. File editing

Answer: B

6. Burp Suite intercepts:

A. SMS

B. HTTP/HTTPS traffic

C. Bluetooth signals

D. Email logs

Answer: B

7. Comodo is known for:

A. SSL certificates

B. CSS templates

C. Database design

D. Mobile apps

Answer: A

8. URL access control must be checked:

A. Only at login

B. On every page request

C. Only for admin pages

D. Only for API calls

Answer: B

9. Direct URL access vulnerability is related to:

A. Authorization failure

B. Encryption failure

C. Cookie storage

D. DNS protocol

Answer: A

10. Proper access control uses:

A. Allow all roles

B. Role-based restrictions

C. Unlimited sessions

D. Plain HTTP

Answer: B

