

UNIT-1: Fundamentals of Web Application Security

1. History of Software Security

- Early software focused mainly on functionality, not security.
- Rise of internet → increase in cyber-attacks (worms, viruses, SQL injection, etc.).
- Security evolved from reactive patches to proactive secure coding.

2. Recognizing Web Application Security Threats

- Threats include: malware, phishing, SQL injection, XSS, session hijacking, broken access control.
- Attackers exploit vulnerabilities in code, configuration, or user behavior.

3. Web Application Security

- Protecting web apps from attacks by securing code, server, and data.
- Includes: secure coding, patching, encryption, authentication, and access control.

4. Authentication and Authorization

- **Authentication:** Verifies user identity (passwords, OTPs, biometrics).
- **Authorization:** Determines what authenticated users can access (role-based access).

5. Secure Socket Layer (SSL) & Transport Layer Security (TLS)

- Encryption protocols that secure communication between client and server.
- Provide confidentiality, integrity, and authenticity using certificates.

6. Session Management

- Maintains user state after login using session IDs or cookies.
- Secure session handling prevents hijacking, fixation, and replay attacks.

7. Input Validation

- Ensures that user input is filtered and sanitized.
- Prevents major attacks like SQL Injection, XSS, Command Injection.

UNIT-2: Secure Development and Deployment

1. Web Application Security

- Developing apps with security principles from design to deployment.
- Includes secure coding, encryption, least privilege, and secure configurations.

2. Security Testing

- Evaluates application vulnerabilities using tests like SAST, DAST, fuzzing.
- Helps detect weaknesses before deployment.

3. Security Incident Response Planning

- A predefined plan for detecting, analyzing, and responding to attacks.
- Phases: preparation, detection, containment, eradication, recovery, lessons learned.

4. Microsoft Security Development Lifecycle (SDL)

- A secure development process with phases: requirements, design, implementation, testing, release, response.
- Focuses on threat modeling and secure coding guidelines.

5. OWASP CLASP (Comprehensive Lightweight Application Security Process)

- A set of security practices integrated into SDLC.
- Focuses on roles, responsibilities, and vulnerability prevention.

6. Software Assurance Maturity Model (SAMM)

- Framework to measure and improve software security practices.
- Four domains: Governance, Construction, Verification, Deployment.

UNIT-3: Secure API Development

1. API Security

- Protecting APIs from unauthorized access, data leakage, and abuse.

2. Session Cookies

- Store session IDs.
- Should be secure, HttpOnly, and have proper expiration.

3. Token-Based Authentication

- Uses tokens (JWT, OAuth tokens) instead of sessions.
- Easier for mobile and distributed systems.

4. Securing Natter APIs (REST APIs)

- Prevent API abuse and vulnerabilities using:
 - **Security controls** (input validation, authentication, access control).
 - **Rate limiting** to prevent DDoS/burst requests.
 - **Encryption** (HTTPS).
 - **Audit logging** for monitoring API access.

5. Securing Service-to-Service APIs

- **API Keys** for basic identification.
- **OAuth2** for delegated authorization between services.

6. Securing Microservice APIs

- **Service Mesh** (e.g., Istio) provides authentication, traffic control, encryption.
- Lock down network connections and restrict ports.
- Validate all incoming requests to microservices.

UNIT-4: Vulnerability Assessment & Penetration Testing

1. Vulnerability Assessment Lifecycle

- Steps: Asset identification → scanning → analysis → remediation → verification → reporting.

2. Vulnerability Assessment Tools

- **Cloud-based scanners** → scan cloud apps (e.g., Qualys).
- **Host-based scanners** → scan OS and installed software.
- **Network-based scanners** → scan network devices and ports.
- **Database-based scanners** → check for insecure DB configurations.

3. Types of Penetration Tests

- **External Testing** → simulates outside attacker.
- **Web Application Testing** → tests app-specific vulnerabilities.
- **Internal Penetration Testing** → simulates insider attacks.
- **SSID/Wireless Testing** → tests Wi-Fi networks.
- **Mobile Application Testing** → tests mobile apps for security flaws.

UNIT-5: Hacking Techniques and Tools

1. Social Engineering

- Manipulating people to reveal confidential information (phishing, pretexting).

2. Injection

- Attacks that insert malicious commands (SQL injection, command injection).

3. Cross-Site Scripting (XSS)

- Injecting malicious scripts into web pages viewed by users.
- Types: Stored, Reflected, DOM-based.

4. Broken Authentication & Session Management

- Weak login and session controls allow attackers to hijack accounts.

5. Cross-Site Request Forgery (CSRF)

- Forces a logged-in user to perform unwanted actions (like transactions).

6. Security Misconfiguration

- Incorrect server/application settings create vulnerabilities (open ports, default credentials).

7. Insecure Cryptographic Storage

- Storing sensitive data without proper encryption or hashing.

UNIT-6: Failure to Restrict URL Access & Tools

1. Failure to Restrict URL Access

- Occurs when users access unauthorized pages via direct URL access.
- Prevented using authorization checks on each page.

2. Tools

- **Comodo** → Web security, SSL, malware scanning.
- **OpenVAS** → Open-source vulnerability scanner.
- **Nexpose** → Vulnerability management and risk scoring.
- **Nikto** → Web server scanner for outdated software and config issues.
- **Burp Suite** → Web penetration testing tool for scanning and intercepting traffic.

 UNIT-1: Fundamentals of Web Application Security (10 MCQs)

1. Software security initially focused on which of the following?

- A. Secure coding
- B. Application functionality
- C. Access control
- D. Threat modeling

Answer: B

2. Which of the following is NOT a web application threat?

- A. SQL Injection
- B. Phishing
- C. XSS
- D. Cloud Storage

Answer: D

3. Authentication means:

- A. Giving permissions
- B. Identifying a user
- C. Encrypting data
- D. Managing sessions

Answer: B

4. SSL/TLS provides:

- A. Only integrity
- B. Only authentication
- C. Encryption, integrity, authentication
- D. Only authorization

Answer: C

5. Session management mainly uses:

- A. Tokens
- B. Cookies and session IDs
- C. Digital signatures
- D. Backups

Answer: B

6. Input validation prevents:

- A. Brute-force attacks
- B. SQL Injection and XSS
- C. Server outages
- D. Patch failures

Answer: B

7. Broken access control is related to:

- A. Encryption failure
- B. Unauthorized resource access
- C. Password hashing
- D. Logging errors

Answer: B

8. TLS is the updated version of:

- A. SSH
- B. SSL
- C. HTTPS
- D. HTTP

Answer: B

9. A web application is secure when:

- A. It has a strong UI
- B. It is tested and configured securely
- C. It uses only HTML
- D. It is deployed on cloud

Answer: B

10. Which ensures confidentiality on the web?

- A. Session cookies
- B. TLS encryption
- C. Authorization
- D. Caching

Answer: B

 UNIT–2: Secure Development and Deployment (10 MCQs)

1. Security testing is used to find:

- A. UI issues
- B. Functional errors
- C. Vulnerabilities
- D. Documentation errors

Answer: C

2. Incident response begins with:

- A. Recovery
- B. Containment
- C. Preparation
- D. Analysis

Answer: C

3. SDL model was developed by:

- A. IBM
- B. Google
- C. Microsoft
- D. Oracle

Answer: C

4. CLASP is primarily focused on:

- A. Hardware testing
- B. Lightweight security practices
- C. Front-end design
- D. User authentication

Answer: B

5. SAMM includes how many domains?

- A. 3
- B. 4
- C. 5
- D. 7

Answer: B

6. Threat modeling is done during which SDL phase?

- A. Design
- B. Deployment
- C. Testing
- D. Release

Answer: A

7. Verification in SAMM involves:

- A. Code writing
- B. Testing security
- C. Deployment configuration
- D. User training

Answer: B

8. Secure coding is part of:

- A. Construction phase
- B. Governance phase
- C. Release phase
- D. Monitoring phase

Answer: A

9. Security testing like SAST is done on:

- A. Running application
- B. Static code
- C. Cloud services
- D. Network devices

Answer: B

10. Deployment security includes:

- A. UI color selection
- B. Patch installation
- C. Database normalization
- D. Python compilation

Answer: B

 UNIT-3: Secure API Development (10 MCQs)

1. REST API communication uses:

- A. SSH
- B. HTTP/HTTPS
- C. STP
- D. SMTP

Answer: B

2. Session cookies must be:

- A. Visible to JavaScript
- B. HttpOnly and Secure
- C. Unencrypted
- D. Publicly accessible

Answer: B

3. Token-based authentication commonly uses:

- A. CSS
- B. JWT
- C. SQL
- D. JSON-only

Answer: B

4. Rate limiting prevents:

- A. Data encryption
- B. API abuse and DoS
- C. HTTPS usage
- D. Database indexing

Answer: B

5. Audit logging helps in:

- A. Speeding API
- B. Monitoring access
- C. Reducing encryption
- D. Increasing UI quality

Answer: B

6. API keys are used for:

- A. User UI design
- B. Simple service-to-service authentication
- C. Database queries
- D. Encryption

Answer: B

7. OAuth2 provides:

- A. Session management
- B. Authorization delegation
- C. Token hashing
- D. Password encryption

Answer: B

8. Service Mesh is used in:

- A. Monolithic apps
- B. Microservices
- C. Local storage
- D. Browser caching

Answer: B

9. Encryption of API traffic is done using:

- A. TLS
- B. JSON
- C. XML
- D. HTML

Answer: A

10. Securing incoming API requests includes:

- A. Allowing all IPs
- B. Validating tokens
- C. Disabling authentication
- D. Using plain HTTP

Answer: B

 UNIT-4: Vulnerability Assessment & Penetration Testing (10 MCQs)

1. First step in vulnerability assessment lifecycle:

- A. Reporting
- B. Analysis
- C. Asset identification
- D. Remediation

Answer: C

2. OpenVAS is an example of:

- A. Host scanner
- B. Network scanner
- C. Wireless tool
- D. Firewall

Answer: B

3. External penetration test simulates:

- A. Insider
- B. Outsider
- C. Admin
- D. System user

Answer: B

4. Web application penetration testing focuses on:

- A. Cloud architecture
- B. Application layer vulnerabilities
- C. Physical devices
- D. Password length

Answer: B

5. Wireless testing evaluates:

- A. RAM size
- B. Wi-Fi vulnerabilities
- C. Browser cookies
- D. SQL databases

Answer: B

6. Database vulnerability scanners detect:

- A. Table joins
- B. Misconfigurations
- C. SSL certificates
- D. Session cookies

Answer: B

7. Cloud-based scanners are used for:

- A. Offline servers
- B. Cloud-hosted apps
- C. Desktop apps
- D. Mobile phones

Answer: B

8. Internal testing assumes:

- A. Public attacker
- B. Insider access
- C. No access
- D. Only admin privileges

Answer: B

9. Remediation means:

- A. Finding bugs
- B. Fixing vulnerabilities
- C. Creating attacks
- D. Deleting logs

Answer: B

10. Final step of penetration testing:

- A. Scanning
- B. Reporting
- C. Threat modeling
- D. Logging

Answer: B

 UNIT-5: Hacking Techniques and Tools (10 MCQs)

1. Social engineering mainly exploits:

- A. Hardware weaknesses
- B. Human psychology
- C. Network protocols
- D. Encryption

Answer: B

2. SQL injection targets:

- A. Database queries
- B. CSS files
- C. Tokens
- D. Cookies only

Answer: A

3. XSS affects:

- A. Server OS
- B. Client browser
- C. Network hardware
- D. IoT devices

Answer: B

4. Broken authentication results in:

- A. UI errors
- B. Account compromise
- C. Faster login
- D. Better performance

Answer: B

5. CSRF forces users to:

- A. Change passwords
- B. Perform unwanted actions
- C. Block sessions
- D. Download files

Answer: B

6. Security misconfiguration includes:

- A. Strong passwords
- B. Default credentials
- C. Disabled ports
- D. Encrypted storage

Answer: B

7. Insecure cryptographic storage includes:

- A. Proper hashing
- B. Plain-text password storage
- C. Using SSL
- D. Tokenization

Answer: B

8. Injection occurs due to:

- A. Secure code
- B. Sanitized input
- C. Poor input validation
- D. Token usage

Answer: C

9. XSS allows attackers to:

- A. Modify server hardware
- B. Steal cookies
- C. Install OS
- D. Delete RAM

Answer: B

10. CSRF can be prevented using:

- A. HTTP only cookies
- B. CSRF tokens
- C. DNS changes
- D. USB firewall

Answer: B

 UNIT-6: Failure to Restrict URL Access & Tools (10 MCQs)

1. Failure to restrict URL access allows:

- A. Faster browsing
- B. Unauthorized access
- C. Better UI
- D. Faster caching

Answer: B

2. This tool is used for web app penetration testing:

- A. MS Word
- B. Burp Suite
- C. Notepad++
- D. Excel

Answer: B

3. Nikto is primarily used for:

- A. Malware removal
- B. Web server scanning
- C. Antivirus scanning
- D. Cloud storage

Answer: B

4. OpenVAS is a:

- A. Code editor
- B. Vulnerability scanner
- C. Backup tool
- D. Web server

Answer: B

5. Nmap provides:

- A. UI testing
- B. Risk scoring
- C. CSS validation
- D. File editing

Answer: B

6. Burp Suite intercepts:

- A. SMS
- B. HTTP/HTTPS traffic
- C. Bluetooth signals
- D. Email logs

Answer: B

7. Comodo is known for:

- A. SSL certificates
- B. CSS templates
- C. Database design
- D. Mobile apps

Answer: A

8. URL access control must be checked:

- A. Only at login
- B. On every page request
- C. Only for admin pages
- D. Only for API calls

Answer: B

9. Direct URL access vulnerability is related to:

- A. Authorization failure
- B. Encryption failure
- C. Cookie storage
- D. DNS protocol

Answer: A

10. Proper access control uses:

- A. Allow all roles
- B. Role-based restrictions
- C. Unlimited sessions
- D. Plain HTTP

Answer: B