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1. Basic Definitions 

Machine Learning 

A field of study where computers learn patterns from data without being explicitly 

programmed. 

Model 

A mathematical function that maps input to output. 

Training 
Process of learning model parameters from data. 

Testing 
Evaluating the trained model on new unseen data. 

Feature 
An input variable used to describe data. 

Label 

The output or target variable. 

 

2. Linear Algebra (For ML) 

Linear algebra provides mathematical tools for representing data and models. 

Vector 

Ordered list of numbers. 

Example: x = (x1, x2, …, xn) 

Matrix 

2D array of numbers. 

Used for: datasets, transformations. 
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Dot Product 
w^T x = Σ (w_i * x_i) 

Matrix Multiplication 
A (m×n) * B (n×p) = C (m×p) 

Norm (Length of vector) 
||x|| = sqrt( Σ x_i^2 ) 

Eigenvalues and Eigenvectors 

Used in PCA, Spectral Clustering. 

Equation: 

A v = λ v 

Properties Useful in ML 

• Linear regression uses matrix inversion 
• PCA uses eigen decomposition 
• Neural networks use matrix multiplications 

 

3. Statistical Learning Theory 

Statistical learning theory explains how learning works mathematically. 

Generalization 

How well a model performs on unseen data. 

Risk 

Expected loss on new data: 

R(f) = E[ L(y, f(x)) ] 

Empirical Risk 

Loss on training data: 

R_emp(f) = (1/N) Σ L(y_i, f(x_i)) 
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Goal 

Minimize risk (true error), not just training error. 

Bias–Variance Tradeoff 

• High bias → underfitting 
• High variance → overfitting 

VC Dimension 

Capacity or complexity of a hypothesis class. 

High VC → flexible but risky. 

 

4. Types of Learning 

1. Supervised Learning 

Input + Output given. 

Example: classification, regression. 

2. Unsupervised Learning 

Only input, no labels. 

Example: clustering, PCA. 

3. Semi-Supervised Learning 

Some labels + many unlabeled samples. 

4. Reinforcement Learning 

Learns by interacting with environment and receiving rewards. 

5. Self-Supervised Learning 

Uses data to generate its own labels. 
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5. Hypothesis Space and Inductive Bias 

Hypothesis Space (H) 

Set of all models an algorithm can choose from. 

Example: 

For linear models: 

H = { w^T x + b } 

Inductive Bias 

The assumptions the learner uses to choose one hypothesis over others. 

Examples: 

• Linear models assume data is linearly separable 
• Decision trees assume hierarchical structure 
• KNN assumes nearby points have similar labels 

Why Needed? 

Without inductive bias, infinite hypotheses fit training data. 

 

6. Evaluation and Cross Validation 

Train-Test Split 

Split data into: 

1. Training set 
2. Test set 

Accuracy 
Accuracy = correct_predictions / total_predictions 

Confusion Matrix 

TP, TN, FP, FN. 

Precision & Recall 
Precision = TP / (TP + FP) 

Recall = TP / (TP + FN) 
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F1 Score 
F1 = 2 * (Precision * Recall) / (Precision + Recall) 

 

Cross Validation 

K-Fold Cross Validation 

• Divide data into k equal parts 
• Train on k−1 folds 
• Test on the remaining fold 
• Repeat for all folds 
• Average performance 

Advantages 

• Reduces variance 
• Uses data efficiently 

Leave-One-Out CV (LOOCV) 

Special case where k = number of samples. 

 

7. Optimization (in ML) 

Optimization means finding model parameters that minimize the loss function. 

Objective Function 

Commonly: 

minimize  L(w) 

Gradient Descent 

Updates parameters in direction of negative gradient. 

Update rule: 

w = w - η * gradient( L(w) ) 

η = learning rate 
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Variants 

• Batch Gradient Descent 
• Stochastic Gradient Descent 
• Mini-batch Gradient Descent 
• Momentum 
• Adam optimizer 

Convex Optimization 

Loss function is convex → global minimum exists. 

Example: Linear regression. 

Non-Convex Optimization 

Deep neural networks → many local minima. 

 

Below is a clean, exam-oriented explanation of all topics. 

Plain text only — easy to copy, no formatting issues. 

 

1. Statistical Learning Theory 

Statistical Learning Theory studies how a model learns from data and how well it generalizes 

to unseen data. 

Key Concepts 

(a) Generalization 

Ability of a model to perform well on new data (not just training data). 

(b) Risk (True Error) 

Expected loss over the whole data distribution: 

R(f) = E[ L(y, f(x)) ] 

(c) Empirical Risk (Training Error) 

Average loss on training samples: 

R_emp(f) = (1/N) Σ L(y_i , f(x_i)) 
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(d) Empirical Risk Minimization (ERM) 

Choose the hypothesis that minimizes training error. 

(e) Overfitting 

Model fits noise in training data → poor generalization. 

(f) Underfitting 

Model is too simple → high error on both training and test data. 

(g) VC Dimension 

A measure of model complexity. 

Higher VC → more expressive → risk of overfitting. 

Goal of Learning 

Balance between model complexity and generalization. 

 

2. Types of Learning 

(a) Supervised Learning 

Data has input + output labels. 

Tasks: Classification, Regression. 

(b) Unsupervised Learning 

Only input data, no labels. 

Tasks: Clustering, Dimensionality Reduction. 

(c) Semi-Supervised Learning 

Few labeled samples + many unlabeled samples. 

(d) Reinforcement Learning 

Agent interacts with environment and receives rewards. 

Goal: maximize cumulative reward. 
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(e) Self-Supervised Learning 

Model generates its own labels using data structure (e.g., autoencoders). 

(f) Online Learning 

Learning happens continuously with data coming in streams. 

 

3. Hypothesis Space and Inductive Bias 

Hypothesis Space (H) 

Set of all possible models that a learning algorithm can choose. 

Example: 

For linear models: 

H = { w^T x + b } 

Inductive Bias 

Assumptions the learning algorithm makes to choose a hypothesis. 

Examples of inductive bias: 

• Linear models assume data is linearly separable 
• KNN assumes nearby points have similar labels 
• Decision trees assume hierarchical structure in data 
• SVM assumes margin maximization improves generalization 

Why Needed? 

Without assumptions, infinite hypotheses fit the training data → learning becomes 

impossible. 
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4. Evaluation and Cross Validation 

Model Evaluation Methods 

(a) Train–Test Split 

Dataset divided into: 

• Training set 
• Test set (unseen) 

(b) Accuracy 
Accuracy = correct_predictions / total_samples 

(c) Confusion Matrix 

Contains: TP, TN, FP, FN. 

(d) Precision 
Precision = TP / (TP + FP) 

(e) Recall 
Recall = TP / (TP + FN) 

(f) F1 Score 
F1 = 2 * (Precision * Recall) / (Precision + Recall) 

(g) ROC and AUC 

Used to analyze classifier performance. 

 

Cross Validation 

K-Fold Cross Validation 

• Split data into k equal parts 
• Train on k−1 parts 
• Test on remaining 1 part 
• Repeat k times 
• Average the results 
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Advantages 

• Uses all data efficiently 
• Reduces variance of evaluation 
• More reliable than simple train-test split 

Types 

1. k-Fold 
2. Stratified k-Fold (keeps class ratio same) 
3. Leave-One-Out (LOOCV) 
4. Repeated k-Fold 

 

5. Optimization (in Machine Learning) 

Optimization is the process of finding model parameters that minimize the loss function. 

Goal 
minimize L(w) 

Where w = model parameters. 

Gradient Descent 

Most common optimization method. 

Update rule: 

w = w - η * ∇L(w) 

η = learning rate 

∇L(w) = gradient of loss 

Types of Gradient Descent 

• Batch Gradient Descent 
Uses whole dataset each step 

• Stochastic Gradient Descent (SGD) 
Uses one sample per step 

• Mini-Batch Gradient Descent 
Uses small batch per step (most common) 
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Advanced Optimizers 

• Momentum 
• RMSProp 
• Adam 
• Adagrad 

Convex vs Non-Convex Optimization 

• Linear models → convex (easy, one minimum) 
• Deep networks → non-convex (many minima) 

 
 
. 
 

 

1. Statistical Decision Theory 
Statistical Decision Theory provides a mathematical framework for making decisions 

under uncertainty. 

It answers one question: 

“Given a set of observations, how do we choose the best decision that 
minimizes loss?” 

 

Key Concepts 
1. Decision 
An action you choose based on data. 

Example: 

Decide whether an email is spam or not spam. 

 

2. States of Nature 
The true but unknown condition. 

Example: 

Actual class of email (spam or not spam). 
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3. Loss Function (L) 
Measures the cost of making a wrong decision. 

Examples: 

• L = 0 → correct decision 
• L > 0 → wrong decision 
• Medical test false negative → high loss 
• Spam filter misclassification → low loss 

Loss function defines how “bad” each decision is. 

 

4. Risk Function (R) 
Expected loss over all possible states. 

 

R(\theta, d) = \mathbb{E}[L(\theta, d)] 

Goal: 

Choose the decision that minimizes risk. 

 

5. Bayes Risk 
Average risk using a prior probability distribution. 

 

R_B(d) = ∫ L(θ, d) · p(θ) dθ 

Bayes Decision Rule → choose decision with minimum Bayes risk. 

 

2. Bayesian Learning 
Bayesian learning uses Bayes’ Theorem to update beliefs (probabilities) based on data. 

Bayes’ Theorem: 

p(θ | D) = [ p(D | θ) · p(θ) ] / p(D) 

Where: 

• → Prior 
• → Likelihood 
• → Posterior 
• → Evidence (normalizing constant) 
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3. Maximum Likelihood (ML) Estimation 
ML finds parameters that maximize the likelihood of observed data. 

 

θ_ML = arg max_θ p(D | θ) 

Key Idea 
Choose parameters that make the observed data “most probable.” 

Example: 
Given coin flips: H H H T H 

Estimate the probability of heads (θ): 

 

\hat{\theta}_{ML} = \frac{\text{Number of Heads}}{\text{Total flips}} 

ML ignores prior knowledge. 

 

4. Maximum A Posteriori (MAP) Estimation 
MAP estimation maximizes the posterior probability. 

 

θ_MAP = arg max_θ p(θ | D) 

Using Bayes’ rule: 

θ_MAP = arg max_θ [ p(D | θ) · p(θ) ] 

Key Idea 
ML + Prior 

MAP uses both: 

• Data (likelihood) 
• Prior belief 

Example 
Coin flips + belief that coin is fair. 

MAP will push θ closer to 0.5, unlike ML. 

 

5. Bayes Estimates 
Bayes estimate is the expected value of parameters using the posterior distribution. 
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θ_Bayes = E[ θ | D ] 

Key Idea 
Bayes estimate uses full posterior, not just mode (like MAP). 

Depends on loss function: 

• For squared loss → Posterior mean 
• For absolute loss → Posterior median 
• For 0–1 loss → Posterior mode (MAP) 

 

6. Conjugate Priors 
A prior is a conjugate prior if the posterior has the same distribution family as the prior. 

Why Useful? 
• Posterior is easy to compute 
• Closed-form solution 
• No complicated integrals 

 
Common Conjugate Priors 
1. Bernoulli / Binomial Likelihood 
Likelihood: Coin flips (success/failure) 

Conjugate Prior: Beta distribution 

Posterior: 

 

p ~ Beta(α, β)

 

2. Gaussian Likelihood 
Likelihood: Normal data 

Conjugate Prior: 

• Prior mean → Normal distribution 
• Prior variance → Inverse-Gamma 

Posterior is also Gaussian (for known variance). 

 

3. Poisson Likelihood 
Conjugate Prior: Gamma distribution 
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Why Conjugate Priors Matter? 
• Simple formulas 
• Easy posterior updates 
• Used in Naive Bayes, Bayesian Networks, Hidden Markov Models 

 

Summary Table 
Concept Meaning 

Statistical Decision Theory Framework for decision-making under uncertainty 

ML Estimate Maximizes likelihood P(D 

MAP Estimate Maximizes posterior P(θ 

Bayes Estimate Posterior expectation of θ 

Conjugate Prior Prior + likelihood → same family posterior 

 

 
Below is a simple, clear, exam-oriented explanation of Linear Regression, Ridge 

Regression, and Lasso Regression with formulas, intuition, differences, and applications. 

 

⭐ 1. Linear Regression 
Linear Regression is a supervised learning method used to predict a continuous value. 

✔ Goal 
Find a straight line (or hyperplane) that best fits the data. 

✔ Model 
 

y = w_0 + w_1x_1 + w_2x_2 + \cdots + w_nx_n 

Where: 

• → predicted output 
• → input features 
• → model weights 

 
⭐ Cost Function: Mean Squared Error (MSE) 
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J(w) = \frac{1}{2m}\sum_{i=1}^{m}(y_i - \hat{y_i})^2 

✔ Goal 
Minimize MSE by choosing appropriate weights. 

✔ Limitations 
• Overfitting when many features 
• Weights can become too large 
• Sensitive to multicollinearity 
• Not good when features are highly correlated 

 

⭐ 2. Ridge Regression (L2 Regularization) 
Ridge Regression solves the limitations of Linear Regression by adding a penalty term. 

✔ Ridge Cost Function 
 

J(w) = \frac{1}{2m}\sum (y_i - \hat{y_i})^2 + \lambda \sum_{j=1}^{n} w_j^2 

Where: 

• = Regularization parameter 
• = L2 penalty 

 
⭐ Intuition 
Ridge shrinks coefficients but does not make them zero. 

✔ Prevents: 
• Overfitting 
• Large coefficients 
• Multicollinearity issues 

 
⭐ Properties 

• Coefficients become small (shrinked). 
• Model becomes more stable. 
• Works well when many small/medium-sized effects exist. 

 
✔ When to Use Ridge? 

• When all features contribute a little 
• When features are highly correlated 
• When we want to reduce model complexity but not remove features 
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⭐ 3. Lasso Regression (L1 Regularization) 
Lasso (Least Absolute Shrinkage and Selection Operator) adds L1 penalty on weights. 

✔ Lasso Cost Function 
 

J(w) = (1 / (2m)) * Σ (y_i - y_hat_i)^2  +  λ * Σ_{j=1 to n} |w_j|✔ 
Intuition 
Lasso shrinks some coefficients to zero, thus performing feature selection. 

 

⭐ Properties 
• Produces sparse models1 
• Selects important features automatically 
• Good for high-dimensional data (many features) 

 
✔ When to Use Lasso? 

• When many features are irrelevant 
• When automatic feature selection is needed 
• When model must be simple and interpretable 

 

⭐ 4. Comparison Table 
Feature Linear Regression Ridge Lasso 

Regularization    No    L2    L1 

Cost Function MSE MSE + λ Σ w² MSE + λ Σ 

Shrinks Coefficients    No    Yes    Yes 

Can set coefficients to zero    No    No    Yes 

Handles multicollinearity Poor Good Average 

Feature Selection No No Yes 

Model Complexity High Medium Low (sparse) 
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⭐ 5. Visual Intuition 
• Linear Regression → No penalty → Large weights possible 
• Ridge → Circular constraint → Shrinks weights 
• Lasso → Diamond constraint → Corners cause weights to become exact zero 

 

⭐ 6. Key Formulas 
✔ Linear Regression solution 
 

w = (X^TX)^{-1}X^Ty 

✔ Ridge Regression solution 
 

w = (X^TX + \lambda I)^{-1}X^Ty 

✔ Lasso Regression solution 
No closed-form solution → solved using coordinate descent. 

 

⭐ 7. Applications 
✔ Linear Regression 

• Salary prediction 
• House price prediction 
• Trend analysis 

✔ Ridge Regression 
• Medical prediction models 
• Marketing prediction 
• Problems with multicollinearity 

✔ Lasso Regression 
• High-dimensional datasets 
• Feature selection in genetics 
• Sparse models in finance 

 
Below are clear, simple, exam-ready explanations of Principal Component Analysis 

(PCA) and Partial Least Squares (PLS) — no extra design, only clean theory and points. 
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1. Principal Component Analysis (PCA) 
Definition 
PCA is an unsupervised dimensionality reduction technique that transforms high-

dimensional data into a smaller set of new uncorrelated variables called principal 

components, while retaining maximum variance. 

 

Key Ideas 
• Reduces number of features. 
• Removes correlation between variables. 
• Captures maximum variance in first few components. 
• Useful in noise reduction and visualization. 

 
How PCA Works (Steps) 

• Standardize the data 

Convert features to same scale. 

• Compute the covariance matrix 

Shows how features vary with each other. 

• Find Eigenvalues and Eigenvectors 

o Eigenvectors → directions of maximum variance (principal components) 
o Eigenvalues → amount of variance captured 

• Sort eigenvalues in descending order 

Select top k components. 

• Project original data onto new components 

Reduced-dimension dataset is formed. 

 

Properties 
• Principal components are orthogonal (uncorrelated). 
• First PC captures maximum variance. 
• Second PC captures next maximum variance, and so on. 
• PCA is unsupervised — it ignores class labels. 

 
Applications 

• Image compression 
• Face recognition (Eigenfaces) 
• Data visualization (2D plots) 
• Noise reduction 
• Removing multicollinearity in regression 
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2. Partial Least Squares (PLS) 
Definition 
PLS is a supervised dimensionality reduction method used when: 

• There are many features 
• Features are highly correlated 
• Goal is prediction (regression or classification) 

PLS finds new components that maximize the covariance between predictors (X) and 

output (Y). 

 

Key Difference from PCA 
• PCA → maximizes variance in X only (unsupervised) 
• PLS → maximizes covariance between X and Y (supervised) 

This means PLS chooses components that are most useful for predicting Y. 

 

How PLS Works (Concept) 
• Computes latent components (called PLS components). 
• Each component is chosen to have:  

o High variance in X 
o High correlation with Y 

• Reduces dimensions while preserving predictive power. 

 
PLS vs PCA 

Feature PCA PLS 

Type Unsupervised Supervised 

Uses Y (target)?    No    Yes 

Objective Maximize variance in X Maximize covariance of X & Y 

Best for Data compression Prediction problems 

Feature correlation Removes Uses correlation for prediction 

 

Applications of PLS 
1. Chemometrics (spectral data) 
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2. Bioinformatics 
3. Quantitative structure–activity relationships (QSAR) 
4. Predictive modeling with many features 
5. Situations where number of predictors >> number of samples 

 
 

Below is a clean, exam-oriented explanation of all topics. 

Plain text only — no design, no symbols that break while copying. 

 

1. Linear Classification 
Linear classification uses a linear decision boundary to separate classes. 

Decision Function 
f(x) = w^T x + b 

Prediction Rule 
y = +1  if  f(x) >= 0 

y = -1  if  f(x) < 0 

Examples 
• Perceptron 
• Linear SVM 
• Logistic Regression (though probabilistic) 

Advantages 
• Fast 
• Interpretable 
• Works well when classes are linearly separable 

 

2. Logistic Regression 
Logistic Regression is a classification model, not regression. 

It predicts probability of class 1. 

Linear Score 
z = w^T x + b 

Sigmoid Function 
sigmoid(z) = 1 / (1 + exp(-z)) 

Class Probability 
P(y=1 | x) = sigmoid(w^T x + b) 

Loss Function (Binary Cross Entropy) 
L = - [ y * log(p) + (1 - y) * log(1 - p) ] 



 

Engineerfarm.in 22 

Training 
Use gradient descent to minimize loss. 

Decision Rule 
Predict 1 if P >= 0.5 

Else predict 0 

Advantages 
• Output probability 
• Simple and widely used 
• Works well for binary classification 

 

3. Linear Discriminant Analysis (LDA) 
LDA is a generative probabilistic classifier based on Bayes’ rule. 

It assumes: 

1. Each class is normally distributed 
2. Same covariance matrix for all classes 
3. Different mean vectors 

Class Conditional Density 
p(x | y=k) = Normal( mean = μ_k , covariance = Σ ) 

Discriminant Function 
δ_k(x) = x^T Σ^-1 μ_k - 0.5 μ_k^T Σ^-1 μ_k + log(π_k) 

Where π_k = prior probability of class k. 

Decision Rule 
Assign x to class with largest δ_k(x). 

Decision Boundary 
Because covariance is same for all classes → 

Boundary is linear. 

When LDA Works Best 
• Classes are normally distributed 
• Equal covariance assumption holds 
• Large sample size 

 

4. Quadratic Discriminant Analysis (QDA) 
QDA is similar to LDA but each class has its own covariance matrix. 

Assumption: 
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p(x | y=k) = Normal( mean = μ_k , covariance = Σ_k ) 

Discriminant Function 
δ_k(x) = 

- 0.5 * log |Σ_k| 

- 0.5 * (x - μ_k)^T Σ_k^-1 (x - μ_k) 

+ log(π_k) 

Decision Boundary 
Since Σ_k is different for each class → 

Decision boundary becomes quadratic. 

Difference Between LDA and QDA 
Feature LDA QDA 

Covariance Same Σ for all classes Different Σ_k 

Boundary Linear Quadratic 

Parameters Fewer Many 

Need large dataset No Yes 

More flexible Less More 

Advantages of QDA 
• More flexible 
• Can fit complex class boundaries 

Disadvantages 
• Requires more data 
• Overfits if dataset is small 

 
 

5. Summary Table 
Method Boundary 

Uses 
Y? 

Distribution 
Assumption Covariance 

Linear/Non-
linear 

Linear 
Classification Linear Yes None None Linear 

Logistic 
Regression 

Linear Yes None None Linear 

LDA Linear Yes Gaussian Same for all 
classes 

Linear 
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Method Boundary Uses 
Y? 

Distribution 
Assumption 

Covariance Linear/Non-
linear 

QDA Quadratic Yes Gaussian Different per 
class 

Non-linear 

 

 

 

1. Support Vector Machines (SVM) 
Definition 
SVM is a supervised classification algorithm that finds the best separating boundary 

between classes. 

Key Idea 
SVM tries to find a hyperplane that maximizes the margin (distance) between classes. 

Hyperplane 
A decision boundary: 

w^T x + b = 0 

Margin 
Distance of the closest points (called support vectors) from the hyperplane. 

Goal of SVM 
Maximize the margin: 

Maximize 2 / ||w|| 

This reduces overfitting and improves generalization. 

Soft Margin SVM 
Allows some misclassification using penalty parameter C. 

 

⭐ Kernels in SVM 
When data is not linearly separable, SVM uses kernel tricks to map data into higher 

dimensions. 

Common Kernels: 
1. Linear Kernel 

K(x, z) = x^T z 
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• Polynomial Kernel 

K(x, z) = (x^T z + c)^d 

• RBF / Gaussian Kernel 

K(x, z) = exp(-||x - z||^2 / (2σ^2)) 

• Sigmoid Kernel 

K(x, z) = tanh(k * x^T z + c) 

Why use kernels? 
They allow SVM to learn non-linear boundaries without increasing dimensionality 

manually. 

 

2. Artificial Neural Networks (ANN) 
Definition 
ANN is a machine learning model made of neurons organized in layers: 

• Input layer 
• Hidden layers 
• Output layer 

Each neuron computes: 

z = w^T x + b 

a = activation(z) 

Common Activation Functions: 
1. Sigmoid: 1 / (1 + exp(-z)) 
2. ReLU: max(0, z) 
3. Tanh: (e^z - e^-z) / (e^z + e^-z) 

 
⭐ Backpropagation 
Backpropagation is the learning algorithm for neural networks. 

Goal 
Minimize the error using gradient descent. 

Steps 
• Forward pass 

Network computes predictions. 

• Calculate error 

Example: Mean Square Error or Cross Entropy. 

• Backward pass 

Compute gradients of weights using chain rule. 
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• Update weights 

w = w - learning_rate * gradient 

Backpropagation updates weights layer-by-layer starting from output back 
to input. 

 

3. Decision Trees 
Definition 
A tree-based model that splits data into groups based on feature values. 

How it works 
At each node, the algorithm selects the best feature to split data to create pure subsets. 

Metrics used 
1. Gini Index 

Gini = 1 - sum(p_i^2) 

2. Entropy 

Entropy = - sum( p_i * log2(p_i) ) 

3. Information Gain 

IG = Entropy(parent) - Weighted entropy(children) 

Important Terms 
4. Root node: first split 
5. Internal node: decision 
6. Leaf node: final class 

Advantages 
• Easy to interpret 
• Handles non-linear relations 
• Works for classification and regression 

Disadvantages 
• Overfitting 
• Unstable to small data changes 

 

4. Bayes Optimal Classifier 
Definition 
The Bayes Optimal Classifier is the best possible classifier because it uses the full posterior 

probability distribution. 
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Decision Rule 
Choose class with maximum posterior probability: 

Choose class k if P(class_k | x) is highest. 

Key Point 
1. It always achieves minimum possible error. 
2. But it is often impossible to compute (posterior distribution is unknown). 

This is a theoretical ideal classifier. 

 

5. Naive Bayes Classifier 
Definition 
Naive Bayes uses Bayes theorem assuming that all features are conditionally independent 

given the class. 

Bayes Rule 
P(y | x) = [ P(x | y) * P(y) ] / P(x) 

Naive Assumption 
P(x1, x2, x3…| y) = P(x1|y) * P(x2|y) * P(x3|y) * ... 

Prediction rule 
Choose the class y with highest P(y | x) 

Types of Naive Bayes 
1. Gaussian Naive Bayes (continuous data) 
2. Multinomial Naive Bayes (text classification) 
3. Bernoulli Naive Bayes (binary features) 

Advantages 
2. Fast 
3. Works well even with limited data 
4. Excellent for text (spam, sentiment) 

Disadvantages 
3. Assumption of independence rarely true 
4. May perform poorly if features strongly correlated 
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Hypothesis Testing 
Hypothesis testing is a statistical method used to make decisions about a population based on 

sample data. 

Steps 
• Define hypotheses 

o Null hypothesis (H0): No effect, no difference. 
o Alternative hypothesis (H1): Effect exists. 

• Choose significance level (α) 

Usually α = 0.05. 

• Select test statistic (z-test, t-test, chi-square, F-test etc.) 

• Compute p-value 

• Decision Rule 
o If p-value ≤ α → reject H0 
o If p-value > α → fail to reject H0 

Types 
• One-tailed test: checks only one direction. 
• Two-tailed test: checks both directions. 

Errors 
• Type-I error: rejecting true H0 
• Type-II error: failing to reject false H0 

 

Ensemble Methods 
Ensemble methods combine multiple models to improve accuracy and reduce overfitting. 

Why Ensemble? 
• Individual models have errors. 
• Combining many models reduces variance and improves generalization. 

Types of Ensemble 
1. Bagging 
2. Boosting 
3. Stacking 

 

Bagging (Bootstrap Aggregating) 
Bagging reduces variance by training multiple models on different bootstrap samples. 

Process 
• Randomly sample dataset with replacement → bootstrap samples 
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• Train same model (e.g., decision tree) on each sample. 
• Combine predictions:  

o Classification → majority voting 
o Regression → average 

Example 
Random Forest = Bagging + Decision Trees 

Advantages 
• Reduces overfitting 
• Works well with unstable models (trees) 

 

AdaBoost (Adaptive Boosting) 
Boosting reduces bias by focusing on difficult samples. 

Process 
1. Start with equal weights on all training samples. 
2. Train weak learner (e.g., small decision tree). 
3. Increase weights of misclassified points. 
4. Train next classifier focusing on hard points. 
5. Final prediction = weighted sum of all weak learners. 

Important Formulas 
Error of classifier: 

err_t = sum(w_i * I(y_i != h_t(x_i))) 

Classifier weight: 

alpha_t = 0.5 * ln((1 - err_t) / err_t) 

Weight update: 

w_i ← w_i * exp(-alpha_t * y_i * h_t(x_i)) 

Normalize weights. 

Characteristics 
• Sequential learning 
• Reduces bias 
• Sensitive to noise 

 

Gradient Boosting 
Boosting method based on gradient descent in function space. 
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Idea 
Build model step-by-step by minimizing loss function: 

F_0(x) = initial prediction 

F_t(x) = F_(t-1)(x) + learning_rate * h_t(x) 

Where h_t(x) = model trained to fit negative gradient of loss. 

Steps 
• Initialize model with constant prediction. 
• Compute residuals (negative gradient of loss). 
• Train weak learner (tree) to predict residuals. 
• Update model. 

Used in 
• XGBoost 
• LightGBM 
• CatBoost 

Advantages 
1. Very high accuracy 
2. Works with any differentiable loss 

Disadvantages 
1. Slower than bagging 
2. Sensitive to overfitting (use regularization) 

 

Summary Table 
Method Purpose How it Works Reduces Example 

Bagging Improve stability Train on bootstrap 
samples 

Variance Random 
Forest 

AdaBoost Improve accuracy 
Focus on misclassified 
samples Bias AdaBoost 

Gradient 
Boosting 

Sequential error 
correction 

Fit gradients of loss 
function 

Bias & 
variance 

XGBoost, 
LightGBM 
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1. Clustering 
Clustering is an unsupervised learning method that groups similar data points into clusters. 

Goal 
Maximize intra-cluster similarity and minimize inter-cluster similarity. 

Types of Clustering 
• Partition-based 
• Hierarchical 
• Density-based 
• Grid-based 
• Model-based 
• Spectral methods 

 

2. K-means Clustering 
K-means is a partition-based, centroid-based clustering algorithm. 

Steps 
1. Choose number of clusters k 
2. Initialize k centroids (randomly) 
3. Assign each point to nearest centroid using Euclidean distance 
4. Update centroids by taking the mean of points in each cluster 
5. Repeat assignment + update until convergence 

Objective Function 
Minimize sum of squared distances: 

J = Σ Σ || x_i - μ_j ||^2 

where μ_j = centroid of cluster j. 

Pros 
• Simple and fast 
• Works well for spherical clusters 

Cons 
1. Requires k in advance 
2. Sensitive to outliers 
3. Cannot detect arbitrary shapes 

 

3. K-medoids (PAM – Partitioning Around Medoids) 
K-medoids is similar to K-means but uses medoid (actual data point) instead of mean. 
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Medoid 
A representative point in the cluster with minimum total distance to all other points. 

Steps 
• Choose k medoids (initial) 
• Assign points to nearest medoid 
• Try swapping medoids with non-medoids to reduce cost 
• Continue until no improvement 

Objective Function 
Minimize sum of pairwise dissimilarities: 

J = Σ Σ distance(x_i , medoid_j) 

Pros 
• Robust to outliers 
• Works with any distance metric 

Cons 
• Slower than K-means 
• Not suitable for very large datasets 

 

4. Density-Based Clustering (DBSCAN) 
DBSCAN = Density-Based Spatial Clustering of Applications with Noise 

Key Concepts 
1. eps: radius 
2. minPts: minimum number of points for dense region 
3. Core point: ≥ minPts within eps 
4. Border point: < minPts but inside eps of a core point 
5. Noise point: not core, not border 

Steps 
1. Select an unvisited point 
2. If it is a core point → form a cluster 
3. Expand the cluster by visiting reachable density points 
4. Mark others as noise 

Pros 
• Finds clusters of arbitrary shape 
• Handles noise and outliers 
• No need to specify k 



 

Engineerfarm.in 33 

Cons 
• EPS and minPts selection is hard 
• Not good for varying density clusters 

 

5. Hierarchical Clustering 
Builds a hierarchy (tree-like structure) of clusters. 

Two Types 
1. Agglomerative (bottom-up) 

Start with each point as its own cluster → merge repeatedly. 

2. Divisive (top-down) 

Start with one cluster → repeatedly split. 

Distance (Linkage) Methods 
• Single linkage: min distance between points 
• Complete linkage: max distance 
• Average linkage: average distance 
• Ward’s method: minimize variance 

Output 
A dendrogram that shows how clusters are merged/split. 

Pros 
• No need for k 
• Good for small datasets 

Cons 
• Expensive for large datasets 
• Hard to undo a bad merge 

 

6. Spectral Clustering 
Spectral clustering uses eigenvalues of a similarity matrix to find clusters. 

Steps 
1. Construct similarity graph (S) 

Example: S(i,j) = exp( - ||xi - xj||² / (2σ²) ) 

2. Compute graph Laplacian matrix: 
3. L = D - S 

where D = diagonal degree matrix 

4. Compute top k eigenvectors of L 

→ forms a low-dimensional representation 
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5. Apply K-means on these eigenvectors 

Why Spectral Clustering? 
• Works well for non-convex and complex cluster shapes 
• Uses graph theory to detect cluster structure 

Pros 
• Can detect complex shapes 
• More accurate than K-means for tricky data 

Cons 
1. Needs eigen-decomposition 
2. Expensive for large datasets 

 
 

 

 

 

 

 

1. Expectation–Maximization (EM) Algorithm 
EM is an iterative optimization algorithm used when data has missing values, latent 

variables, or hidden structure. 

Goal 
Maximize the likelihood function when direct computation is difficult. 

Steps 
EM alternates between two steps: 

E-Step (Expectation) 
Compute the expected value of hidden variables using current parameters. 

Mathematically: 

Q(θ | θ_old) = E[ log L(θ ; X, Z) | X, θ_old ] 

Where: 

X → observed data 

Z → hidden variables 

θ → model parameters 
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M-Step (Maximization) 
Maximize this expected log-likelihood to update parameters. 

θ_new = argmax_θ Q(θ | θ_old) 

Repeat E-step and M-step until convergence. 
Where Used 

• Gaussian Mixture Models 
• Hidden Markov Models 
• Missing data estimation 

 

2. Gaussian Mixture Models (GMMs) 
GMM represents data as a mixture of multiple Gaussian distributions. 

Probability Model 
p(x) = Σ_k π_k * N(x | μ_k, Σ_k) 

Where: 

π_k = mixing weight 

μ_k = mean of k-th Gaussian 

Σ_k = covariance matrix 

Goal 
Estimate parameters {π_k, μ_k, Σ_k}. 

How GMM is Learned 
Using Expectation-Maximization: 

E-Step 
Compute probability each point belongs to each cluster (responsibility): 

γ(z_k) = π_k * N(x | μ_k, Σ_k) / Σ_j π_j * N(x | μ_j, Σ_j) 

M-Step 
Update parameters: 

N_k = Σ_i γ_i(k) 

μ_k = (1/N_k) Σ_i γ_i(k) x_i 

Σ_k = (1/N_k) Σ_i γ_i(k) (x_i − μ_k)(x_i − μ_k)^T 

π_k = N_k / N 

Advantages 
• Soft clustering 
• Handles complex-shaped clusters 
• More flexible than K-means 
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3. Learning Theory (Introduction) 
Learning theory studies how algorithms learn, how well they generalize, and what 

guarantees exist. 

Key Concepts 
Hypothesis Class (H) 
Set of all possible models an algorithm can choose from. 

Generalization 
Performance on unseen data. 

Overfitting 
Good on training data, bad on test data. 

VC Dimension 
Measures capacity/complexity of a model. 

Higher VC → high flexibility → risk of overfitting. 

Bias–Variance Tradeoff 
• High bias → underfitting 
• High variance → overfitting 

PAC Learning (Probably Approximately Correct) 
A framework saying that learning is possible if: 

1. Hypothesis class is not too large 
2. Enough samples are available 

 

4. Introduction to Reinforcement Learning (RL) 
Reinforcement Learning is a learning framework where an agent learns by interacting with 

an environment to maximize reward. 

Key Components 
• Agent: learner 
• Environment: where agent acts 
• State (s): current situation 
• Action (a): choice made by agent 
• Reward (r): feedback 
• Policy (π): mapping from state → action 
• Value Function (V or Q): expected future reward 
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Goal 
Maximize cumulative reward. 

Types of RL Methods 
• Model-free 

o Q-learning 
o SARSA 
o Deep Q Networks (DQN) 

• Model-based 

o Learn transition probabilities 

Exploration vs Exploitation 
• Explore: try new actions 
• Exploit: choose best-known action 

 

5. Bayesian Networks (Bayes Nets) 
Bayesian Networks are probabilistic graphical models that represent joint probability 

distributions using a Directed Acyclic Graph (DAG). 

Nodes 
Random variables. 

Edges 
Dependencies / causal relationships. 

Each node has a Conditional Probability Table (CPT): 
P(X | Parents(X)) 

Joint Probability Distribution 
Computed using: 

P(X1, X2, …, Xn) = Π P(X_i | Parents(X_i)) 

Advantages 
• Represents uncertainty 
• Supports inference 
• Explains causal structure 
• Works with incomplete data 

Applications 
• Medical diagnosis 
• Fraud detection 
• Speech recognition 
• Robotics 
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