1. Basic Definitions
Machine Learning

A field of study where computers learn patterns from data without being explicitly
programmed.

Model
A mathematical function that maps input to output.

Training

Process of learning model parameters from data.

Testing

Evaluating the trained model on new unseen data.

Feature

An input variable used to describe data.
Label

The output or target variable.

2. Linear Algebra (For ML)

Linear algebra provides mathematical tools for representing data and models.

Vector

Ordered list of numbers.
Example: x = (x1, x2, ..., xn)

Matrix

2D array of numbers.
Used for: datasets, transformations.
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Dot Product

whT x =% (w i * x 1)

Matrix Multiplication

A (mxn) * B (nxp) = C (mxp)

Norm (Length of vector)

[x]] = sqgrt( & x i"2 )

Eigenvalues and Eigenvectors

Used in PCA, Spectral Clustering.

Equation:

Properties Useful in ML

e Linearregression uses matrix inversion
e PCA uses eigen decomposition
¢ Neural networks use matrix multiplications

3. Statistical Learning Theory

Statistical learning theory explains how learning works mathematically.
Generalization

How well a model performs on unseen data.

Risk

Expected loss on new data:
R(f) = E[ L(y, £(x)) ]

Empirical Risk

Loss on training data:

R emp(f) = (1/N) % L(y_ i, f(x_i))

Engineerfarm.in



Goal

Minimize risk (true error), not just training error.

Bias—Variance Tradeoff

e High bias > underfitting
e Highvariance > overfitting

VC Dimension

Capacity or complexity of a hypothesis class.
High VC — flexible but risky.

4. Types of Learning
1. Supervised Learning

Input + Output given.
Example: classification, regression.

2. Unsupervised Learning

Only input, no labels.
Example: clustering, PCA.

3. Semi-Supervised Learning

Some labels + many unlabeled samples.

4. Reinforcement Learning

Learns by interacting with environment and receiving rewards.

5. Self-Supervised Learning

Uses data to generate its own labels.
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5. Hypothesis Space and Inductive Bias
Hypothesis Space (H)

Set of all models an algorithm can choose from.

Example:
For linear models:

H={w'Tzx+ Db}

Inductive Bias

The assumptions the learner uses to choose one hypothesis over others.
Examples:

e Linear models assume data is linearly separable
e Decision trees assume hierarchical structure
¢ KNN assumes nearby points have similar labels

Why Needed?

Without inductive bias, infinite hypotheses fit training data.

6. Evaluation and Cross Validation
Train-Test Split

Split data into:

1. Training set
2. Testset

Accuracy

Accuracy = correct predictions / total predictions

Confusion Matrix
TP, TN, FP, FN.
Precision & Recall

Precision = TP / (TP + FP)
Recall = TP / (TP + FN)
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F1 Score

Fl = 2 * (Precision * Recall) / (Precision + Recall)

Cross Validation
K-Fold Cross Validation

¢ Divide datainto k equal parts
e Trainon k-1 folds

e Test onthe remaining fold

e Repeatfor all folds

e Average performance

Advantages

e Reduces variance
e Uses data efficiently

Leave-One-Out CV (LOOCV)

Special case where k = number of samples.

7. Optimization (in ML)
Optimization means finding model parameters that minimize the loss function.

Objective Function

Commonly:

minimize L (w)

Gradient Descent

Updates parameters in direction of negative gradient.

Update rule:

w =w - n * gradient( L(w) )

n = learning rate
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Variants

e Batch Gradient Descent

e Stochastic Gradient Descent
e Mini-batch Gradient Descent
¢ Momentum

e Adam optimizer

Convex Optimization

Loss function is convex — global minimum exists.
Example: Linear regression.

Non-Convex Optimization

Deep neural networks — many local minima.

Below is a clean, exam-oriented explanation of all topics.
Plain text only — easy to copy, no formatting issues.

1. Statistical Learning Theory

Statistical Learning Theory studies how a model learns from data and how well it generalizes
to unseen data.

Key Concepts

(a) Generalization

Ability of a model to perform well on new data (not just training data).

(b) Risk (True Error)

Expected loss over the whole data distribution:
R(f) = E[ L(y, £(x)) ]

(c) Empirical Risk (Training Error)

Average loss on training samples:

R emp(f) = (1/N) = L(y_i , f(x_i))
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(d) Empirical Risk Minimization (ERM)

Choose the hypothesis that minimizes training error.

(e) Overfitting

Model fits noise in training data — poor generalization.

(f) Underfitting

Model is too simple — high error on both training and test data.
(g) VC Dimension

A measure of model complexity.
Higher VC — more expressive — risk of overfitting.

Goal of Learning

Balance between model complexity and generalization.

2. Types of Learning
(a) Supervised Learning

Data has input + output labels.
Tasks: Classification, Regression.

(b) Unsupervised Learning

Only input data, no labels.
Tasks: Clustering, Dimensionality Reduction.

(c) Semi-Supervised Learning
Few labeled samples + many unlabeled samples.
(d) Reinforcement Learning

Agent interacts with environment and receives rewards.
Goal: maximize cumulative reward.
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(e) Self-Supervised Learning

Model generates its own labels using data structure (e.g., autoencoders).

(f) Online Learning

Learning happens continuously with data coming in streams.

3. Hypothesis Space and Inductive Bias
Hypothesis Space (H)

Set of all possible models that a learning algorithm can choose.

Example:
For linear models:

H={w'Tzx+b}

Inductive Bias

Assumptions the learning algorithm makes to choose a hypothesis.
Examples of inductive bias:

e Linear models assume data is linearly separable

e KNN assumes nearby points have similar labels

e Decision trees assume hierarchical structure in data

¢ SVM assumes margin maximization improves generalization

Why Needed?

Without assumptions, infinite hypotheses fit the training data — learning becomes
impossible.
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4. Evaluation and Cross Validation

Model Evaluation Methods

(a) Train-Test Split

Dataset divided into:

e Training set
e Test set (unseen)

(b) Accuracy

Accuracy = correct predictions / total samples

(c) Confusion Matrix

Contains: TP, TN, FP, FN.

(d) Precision

Precision = TP / (TP + FP)

(e) Recall

Recall = TP / (TP + FN)

(f) F1 Score

Fl = 2 * (Precision * Recall) / (Precision + Recall)

(g) ROC and AUC

Used to analyze classifier performance.

Cross Validation
K-Fold Cross Validation

e Split data into k equal parts
e Trainon k-1 parts

e Testonremaining 1 part

e Repeatktimes

e Average the results
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Advantages

e Uses all data efficiently
o Reduces variance of evaluation
¢ More reliable than simple train-test split

Types
1. k-Fold
2. Stratified k-Fold (keeps class ratio same)
3. Leave-One-Out (LOOCV)
4. Repeated k-Fold

5. Optimization (in Machine Learning)

Optimization is the process of finding model parameters that minimize the loss function.

Goal

minimize L (w)
Where w = model parameters.

Gradient Descent

Most common optimization method.
Update rule:
w=w - n * VL(w)

n = learning rate
VL(w) = gradient of loss

Types of Gradient Descent

e Batch Gradient Descent
Uses whole dataset each step

¢ Stochastic Gradient Descent (SGD)
Uses one sample per step

e Mini-Batch Gradient Descent
Uses small batch per step (most common)
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Advanced Optimizers

e Momentum

e RMSProp
e Adam
e Adagrad

Convex vs Non-Convex Optimization

e Linear models » convex (easy, one minimum)
e Deep networks > non-convex (many minima)

1. Statistical Decision Theory

Statistical Decision Theory provides a mathematical framework for making decisions
under uncertainty.

It answers one question:

“Given a set of observations, how do we choose the best decision that
minimizes loss?”

Key Concepts

1. Decision

An action you choose based on data.

Example:
Decide whether an email is spam or not spam.

2. States of Nature

The true but unknown condition.

Example:
Actual class of email (spam or not spam).
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3. Loss Function (L)
Measures the cost of making a wrong decision.
Examples:

e L =0~ correctdecision

e L>0->wrongdecision

e Medicaltest false negative > high loss

e Spam filter misclassification > low loss

Loss function defines how “bad” each decision is.

4. Risk Function (R)

Expected loss over all possible states.

R(\theta, d) = \mathbb{E} [L(\theta, d)]
Goal:

Choose the decision that minimizes risk.

5. Bayes Risk

Average risk using a prior probability distribution.

R B(d) = J L(8, d) - p(B) db

Bayes Decision Rule — choose decision with minimum Bayes risk.

2. Bayesian Learning

Bayesian learning uses Bayes’ Theorem to update beliefs (probabilities) based on data.

Bayes’ Theorem:

p(® | D) = [ p(D | 8 - p(6) 1 / p(D)
Where:

e > Prior

e - Likelihood

e > Posterior

e > Evidence (normalizing constant)
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3. Maximum Likelihood (ML) Estimation

ML finds parameters that maximize the likelihood of observed data.

6 ML = arg max 6 p(D | ©)
Key ldea

Choose parameters that make the observed data “most probable.”

Example:

Given coin flips: HHH T H
Estimate the probability of heads (0):

\hat{\theta} {ML} = \frac{\text{Number of Heads}}{\text{Total flips}}
ML ignores prior knowledge.

4. Maximum A Posteriori (MAP) Estimation

MAP estimation maximizes the posterior probability.

© MAP = arg max 6 p(6 | D)

Using Bayes’ rule:

© MAP = arg max 6 [ p(D | 6) - p(©) ]
Key ldea

ML + Prior
MAP uses both:

e Data (likelihood)
e Prior belief

Example

Coin flips + belief that coin is fair.
MAP will push 6 closer to 0.5, unlike ML.

5. Bayes Estimates

Bayes estimate is the expected value of parameters using the posterior distribution.

Engineerfarm.in
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® Bayes = E[ 6 | D ]
Key Idea

Bayes estimate uses full posterior, not just mode (like MAP).
Depends on loss function:

e Forsquared loss > Posterior mean
o For absolute loss > Posterior median
e For 0-1 loss > Posterior mode (MAP)

6. Conjugate Priors

A prior is a conjugate prior if the posterior has the same distribution family as the prior.

Why Useful?

e Posterioris easy to compute
e Closed-form solution
¢ No complicated integrals

Common Conjugate Priors

1. Bernoulli / Binomial Likelihood

Likelihood: Coin flips (success/failure)
Conjugate Prior: Beta distribution

Posterior:

p ~ Beta(o, B)

2. Gaussian Likelihood

Likelihood: Normal data
Conjugate Prior:

e Prior mean > Normal distribution
e Priorvariance » Inverse-Gamma

Posterior is also Gaussian (for known variance).

3. Poisson Likelihood

Conjugate Prior: Gamma distribution
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Why Conjugate Priors Matter?

e Simple formulas
e Easy posterior updates
e Usedin Naive Bayes, Bayesian Networks, Hidden Markov Models

Summary Table
Concept Meaning

Statistical Decision Theory Framework for decision-making under uncertainty

ML Estimate Maximizes likelihood P(D

MAP Estimate Maximizes posterior P(6

Bayes Estimate Posterior expectation of 6

Conjugate Prior Prior + likelihood > same family posterior

Below is a simple, clear, exam-oriented explanation of Linear Regression, Ridge
Regression, and Lasso Regression with formulas, intuition, differences, and applications.

$% 1. Linear Regression

Linear Regression is a supervised learning method used to predict a continuous value.

v Goal
Find a straight line (or hyperplane) that best fits the data.

+ Model

y=w 0+ wlx 1+ w2x 2 + \cdots + w nx n

Where:

e - predicted output
e >input features
e > model weights

she Cost Function: Mean Squared Error (MSE)

Engineerfarm.in
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J(w) = \frac{l}{2m}\sum {i=1}"{m} (y i - \hat{y i})"2
v Goal

Minimize MSE by choosing appropriate weights.

+ Limitations

e Overfitting when many features

e Weights can become too large

e Sensitive to multicollinearity

¢ Not good when features are highly correlated

% 2. Ridge Regression (L2 Regularization)

Ridge Regression solves the limitations of Linear Regression by adding a penalty term.

+/ Ridge Cost Function

J(w) = \frac{l}{2m}\sum (y i - \hat{y 1i})”"2 + \lambda \sum {j=1}"{n} w _J"2
Where:

o =Regularization parameter
e =L2penalty

i’l\? Intuition

Ridge shrinks coefficients but does not make them zero.

+ Prevents:

e Overfitting
e Large coefficients
e Multicollinearity issues

¢ Properties

e Coefficients become small (shrinked).
e Model becomes more stable.
e Works well when many small/medium-sized effects exist.

v When to Use Ridge?

¢ When all features contribute a little
e When features are highly correlated
¢ When we want to reduce model complexity but not remove features
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v 3. Lasso Regression (L1 Regularization)

Lasso (Least Absolute Shrinkage and Selection Operator) adds L1 penalty on weights.

« Lasso Cost Function

Jw) = (1 / (2m)) * % (y i - y hat i)?2 + A * 5 {j=1 to n} |w j1V
Intuition

Lasso shrinks some coefficients to zero, thus performing feature selection.

s Properties

e Produces sparse models’
e Selects important features automatically
e Good for high-dimensional data (many features)

+ When to Use Lasso?

¢ When many features are irrelevant
e When automatic feature selection is needed
¢ When model must be simple and interpretable

¢ 4. Comparison Table

Feature Linear Regression Ridge Lasso
Regularization X No & L2 « L1
Cost Function MSE MSE +AZw”MSE + A%
Shrinks Coefficients * No « Yes  Yes
Can set coefficients to zero 3¢ No & No « Yes
Handles multicollinearity Poor Good Average
Feature Selection No No Yes
Model Complexity High Medium Low (sparse)
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s 5. Visual Intuition

e Linear Regression > No penalty > Large weights possible
e Ridge » Circular constraint > Shrinks weights
e Lasso > Diamond constraint » Corners cause weights to become exact zero

% 6. Key Formulas

+/ Linear Regression solution

W = (XATX)~{-1}X"Ty
+/ Ridge Regression solution

w = (X*"TX + \lambda I)"*{-1}X"Ty
+/ Lasso Regression solution

No closed-form solution — solved using coordinate descent.

5% 7. Applications

+ Linear Regression

e Salary prediction
e House price prediction
e Trend analysis

+ Ridge Regression

e Medical prediction models
e Marketing prediction
e Problems with multicollinearity

+/ Lasso Regression

¢ High-dimensional datasets
e Feature selection in genetics
e Sparse modelsinfinance

Below are clear, simple, exam-ready explanations of Principal Component Analysis
(PCA) and Partial Least Squares (PLS) — no extra design, only clean theory and points.
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1. Principal Component Analysis (PCA)

Definition

PCA is an unsupervised dimensionality reduction technique that transforms high-
dimensional data into a smaller set of new uncorrelated variables called principal
components, while retaining maximum variance.

Key ldeas

Reduces number of features.

Removes correlation between variables.

Captures maximum variance in first few components.
Usefulin noise reduction and visualization.

How PCA Works (Steps)

Standardize the data
Convert features to same scale.
Compute the covariance matrix
Shows how features vary with each other.
Find Eigenvalues and Eigenvectors
o Eigenvectors ~> directions of maximum variance (principal components)
o Eigenvalues > amount of variance captured
Sort eigenvalues in descending order
Select top k£ components.
Project original data onto new components
Reduced-dimension dataset is formed.

Properties

Principal components are orthogonal (uncorrelated).
First PC captures maximum variance.

Second PC captures next maximum variance, and so on.
PCA is unsupervised — it ignores class labels.

Applications

Image compression

Face recognition (Eigenfaces)

Data visualization (2D plots)

Noise reduction

Removing multicollinearity in regression

Engineerfarm.in 19



2. Partial Least Squares (PLS)
Definition

PLS is a supervised dimensionality reduction method used when:

e There are many features
e Features are highly correlated
e Goalis prediction (regression or classification)

PLS finds new components that maximize the covariance between predictors (X) and
output (Y).

Key Difference from PCA

e PCA -> maximizes variance in X only (unsupervised)
e PLS > maximizes covariance between X and Y (supervised)

This means PLS chooses components that are most useful for predicting Y.

How PLS Works (Concept)

e Computes latent components (called PLS components).
e Each componentis chosento have:

o Highvariancein X

o Highcorrelation withY
¢ Reduces dimensions while preserving predictive power.

PLS vs PCA
Feature PCA PLS
Type Unsupervised Supervised
UsesY (target)? 3 No « Yes
Objective Maximize variance in X Maximize covariance of X & Y
Best for Data compression Prediction problems
Feature correlation Removes Uses correlation for prediction
Applications of PLS

1. Chemometrics (spectral data)
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Bioinformatics

Quantitative structure—activity relationships (QSAR)
Predictive modeling with many features

Situations where number of predictors >> number of samples

aORwbd

Below is a clean, exam-oriented explanation of all topics.
Plain text only — no design, no symbols that break while copying.

1. Linear Classification

Linear classification uses a linear decision boundary to separate classes.

Decision Function
f(x) = w'T x + Db
Prediction Rule

y = +1 1if f(x) >= 0
y =-1 1if f(x) <0
Examples
e Perceptron
e Linear SVM
e Logistic Regression (though probabilistic)
Advantages

e Fast
e Interpretable
e Works well when classes are linearly separable

2. Logistic Regression

Logistic Regression is a classification model, not regression.
It predicts probability of class 1.

Linear Score

z = w'T X + b

Sigmoid Function

sigmoid(z) =1 / (1 + exp(-2))

Class Probability

P(y=1 | x) = sigmoid(w"T x + b)

Loss Function (Binary Cross Entropy)
L=-1[y*log(p) + (1 -vy) * log(l - p) 1]

Engineerfarm.in
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Training

Use gradient descent to minimize loss.

Decision Rule

Predict 1 if P >= 0.5
Else predict O

Advantages

e Output probability
e Simple and widely used
e Works well for binary classification

3. Linear Discriminant Analysis (LDA)

LDA is a generative probabilistic classifier based on Bayes’ rule.
It assumes:

1. Eachclassis normally distributed
2. Same covariance matrix for all classes
3. Different mean vectors

Class Conditional Density

p(x | y=k) = Normal( mean = p_k , covariance = % )
Discriminant Function
& k(x) = x*T -1 np k - 0.5 p k*"T -1 p_k + log(m_k)

Where n_k = prior probability of class k.

Decision Rule
Assign x to class with largest & k(x).

Decision Boundary

Because covariance is same for all classes —
Boundary is linear.

When LDA Works Best

e Classes are normally distributed
e Equal covariance assumption holds
e Large sample size

4. Quadratic Discriminant Analysis (QDA)

QDA is similar to LDA but each class has its own covariance matrix.

Assumption:

Engineerfarm.in
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p(x | y=k) = Normal( mean = pu_k , covariance
Discriminant Function

5 k(x) =

- 0.5 * log |Z kI

- 0.5 * (x - u k)"T & k~-1
+ log(m_k)

Decision Boundary

(x - p_k)

Since £ k is different for each class —
Decision boundary becomes quadratic.

Difference Between LDA and QDA

g k)

Feature LDA QDA

Covariance Same 2 for all classes Different 2_k
Boundary Linear Quadratic
Parameters Fewer Many
Need large dataset No Yes
More flexible Less More
Advantages of QDA

e More flexible

e Canfit complex class boundaries
Disadvantages

e Requires more data

e Overfits if dataset is small
5. Summary Table

Method Boundary Uses DISt"bUt!On Covariance L|ne.ar/Non-
Y? Assumption linear
Linear . .
e Linear Yes None None Linear

Classification
LOgIStIC. Linear Yes None None Linear
Regression
LDA Linear Yes Gaussian Same for all Linear

Engineerfarm.in
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Method Boundary Uses DISt"bUt!On Covariance Llne.ar/Non-
Y? Assumption linear

Different per

Non-linear
class

QDA Quadratic Yes Gaussian

1. Support Vector Machines (SVM)
Definition

SVM is a supervised classification algorithm that finds the best separating boundary
between classes.

Key ldea

SVM tries to find a hyperplane that maximizes the margin (distance) between classes.
Hyperplane
A decision boundary:

w'T x + b =20
Margin

Distance of the closest points (called support vectors) from the hyperplane.

Goal of SVM

Maximize the margin:

Maximize 2 / ||w]|
This reduces overfitting and improves generalization.

Soft Margin SVM

Allows some misclassification using penalty parameter C.

she Kernels in SVM

When data is not linearly separable, SVM uses kernel tricks to map data into higher
dimensions.

Common Kernels:

1. Linear Kernel

K(x, z) = xX"T z
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¢ Polynomial Kernel

K(x, z) = (x*T z + ¢c)"d
o RBF/ Gaussian Kernel

K(x, z) = exp(-llx - z||"2 / (20"2))
e Sigmoid Kernel

K(x, z) = tanh(k * x*T z + c)
Why use kernels?

They allow SVM to learn non-linear boundaries without increasing dimensionality
manually.

2. Artificial Neural Networks (ANN)
Definition

ANN is a machine learning model made of neurons organized in layers:

e Input layer
e Hidden layers
e Output layer

Each neuron computes:

w T x + b
activation (z)

Z
a
Common Activation Functions:

1. Sigmoid: 1 / (1 + exp(-2z))
2. RelLU:max (0, z)
3. Tanh: (e*z - e*-z) / (e”z + e”-2)

s Backpropagation

Backpropagation is the learning algorithm for neural networks.

Goal

Minimize the error using gradient descent.

Steps

e Forward pass

Network computes predictions.
e Calculate error

Example: Mean Square Error or Cross Entropy.
e Backward pass

Compute gradients of weights using chain rule.
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o Update weights

w = w - learning rate * gradient
Backpropagation updates weights layer-by-layer starting from output back
to input.

3. Decision Trees
Definition

A tree-based model that splits data into groups based on feature values.

How it works

At each node, the algorithm selects the best feature to split data to create pure subsets.

Metrics used

1. GiniIndex
Gini = 1 - sum(p_1i"2)
2. Entropy
Entropy = - sum( p_ i * log2(p_1i) )

3. Information Gain

IG = Entropy(parent) - Weighted entropy(children)
Important Terms

4. Root node: first split
5. Internal node: decision
6. Leafnode: final class

Advantages

e Easytointerpret
e Handles non-linear relations
e Works for classification and regression

Disadvantages

e Overfitting
e Unstable to small data changes

4. Bayes Optimal Classifier
Definition

The Bayes Optimal Classifier is the best possible classifier because it uses the full posterior
probability distribution.
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Decision Rule

Choose class with maximum posterior probability:
Choose class k if P(class k | x) is highest.
Key Point

1. Italways achieves minimum possible error.
2. Butitis often impossible to compute (posterior distribution is unknown).

This is a theoretical ideal classifier.

5. Naive Bayes Classifier
Definition

Naive Bayes uses Bayes theorem assuming that all features are conditionally independent
given the class.

Bayes Rule

P(y | x) = [ P(x | y) * P(y) 1 / P(x)

Naive Assumption

P(x1, x2, x3..| y) = P(x1|y) * P(x2]y) * P(x3]y) * ...

Prediction rule
Choose the class y with highest P(y | x)

Types of Naive Bayes

1. Gaussian Naive Bayes (continuous data)
2. Multinomial Naive Bayes (text classification)
3. Bernoulli Naive Bayes (binary features)

Advantages

2. Fast
3. Works well even with limited data
4. Excellent for text (spam, sentiment)

Disadvantages

3. Assumption of independence rarely true
4. May perform poorly if features strongly correlated
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Hypothesis Testing

Hypothesis testing is a statistical method used to make decisions about a population based on
sample data.

Steps

o Define hypotheses
o Null hypothesis (HO): No effect, no difference.
o Alternative hypothesis (H1): Effect exists.

e Choose significance level ()

Usually a = 0.05.

o Select test statistic (z-test, t-test, chi-square, F-test etc.)

e Compute p-value

e Decision Rule
o Ifp-value < a- reject HO
o Ifp-value > a > failto reject HO

Types

e One-tailed test: checks only one direction.
o Two-tailed test: checks both directions.

Errors

e Type-l error: rejecting true HO
e Type-ll error: failing to reject false HO

Ensemble Methods

Ensemble methods combine multiple models to improve accuracy and reduce overfitting.

Why Ensemble?

e Individual models have errors.
e Combining many models reduces variance and improves generalization.

Types of Ensemble

1. Bagging
2. Boosting
3. Stacking

Bagging (Bootstrap Aggregating)

Bagging reduces variance by training multiple models on different bootstrap samples.

Process

¢ Randomly sample dataset with replacement > bootstrap samples
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e Train same model (e.g., decision tree) on each sample.

e Combine predictions:
o Classification > majority voting
o Regression > average

Example

Random Forest = Bagging + Decision Trees

Advantages

e Reduces overfitting
e Works well with unstable models (trees)

AdaBoost (Adaptive Boosting)

Boosting reduces bias by focusing on difficult samples.

Process

1. Start with equal weights on all training samples.
Train weak learner (e.g., small decision tree).
Increase weights of misclassified points.

Train next classifier focusing on hard points.

oORoDN

Important Formulas
Error of classifier:

err t = sum(w_ i * I(y i != h t(x 1)))
Classifier weight:

alpha t = 0.5 * In((1 - err t) / err_t)
Weight update:

wiewi* exp(-alpha t * y i * h t(x i))
Normalize weights.

Characteristics

e Sequential learning
e Reduces bias
e Sensitive to noise

Gradient Boosting

Boosting method based on gradient descent in function space.

Engineerfarm.in
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ldea

Build model step-by-step by minimizing loss function:

F 0(x) initial prediction
F t(x) F (t-1) (x) + learning rate * h t(x)

Where h_t(x) = model trained to fit negative gradient of loss.

Steps

¢ Initialize model with constant prediction.

e Compute residuals (negative gradient of loss).
o Train weak learner (tree) to predict residuals.
e Update model.

Used in

e XGBoost
e LightGBM
e CatBoost

Advantages

1. Very high accuracy
2. Works with any differentiable loss

Disadvantages

1. Slower than bagging
2. Sensitive to overfitting (use regularization)

Summary Table
Method Purpose How it Works Reduces
Baggin Improve stabilit Train on bootstrap Variance
geing P y samples
AdaBoost Improve accuracy Focus on misclassified Bias
samples
Gradient Sequential error Fit gradients of loss Bias &
Boosting correction function variance

Engineerfarm.in

Example

Random
Forest

AdaBoost

XGBoost,
LightGBM

30



1. Clustering

Clustering is an unsupervised learning method that groups similar data points into clusters.

Goal

Maximize intra-cluster similarity and minimize inter-cluster similarity.

Types of Clustering

e Partition-based

e Hierarchical

e Density-based

e Grid-based

e Model-based

e Spectral methods

2. K-means Clustering

K-means is a partition-based, centroid-based clustering algorithm.

Steps

1. Choose number of clusters k

2. Initialize k centroids (randomly)

3. Assign each point to nearest centroid using Euclidean distance
4. Update centroids by taking the mean of points in each cluster
5. Repeat assignment + update until convergence

Objective Function

Minimize sum of squared distances:

J=33% || x i-mp3 2
where p_j = centroid of cluster j.

Pros

e Simple and fast
o Works well for spherical clusters

Cons

1. Requires kin advance
2. Sensitive to outliers
3. Cannot detect arbitrary shapes

3. K-medoids (PAM — Partitioning Around Medoids)

K-medoids is similar to K-means but uses medoid (actual data point) instead of mean.
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Medoid

A representative point in the cluster with minimum total distance to all other points.

Steps

e Choose k medoids (initial)

e Assign points to nearest medoid

e Try swapping medoids with non-medoids to reduce cost
e Continue until no improvement

Objective Function

Minimize sum of pairwise dissimilarities:
J = % % distance(x_ i , medoid j)
Pros

e Robust to outliers
e Works with any distance metric

Cons

e Slower than K-means
e Not suitable for very large datasets

4. Density-Based Clustering (DBSCAN)

DBSCAN = Density-Based Spatial Clustering of Applications with Noise

Key Concepts

eps: radius

minPts: minimum number of points for dense region
Core point: = minPts within eps

Border point: < minPts but inside eps of a core point
Noise point: not core, not border

aORr0ONM=

Steps

1. Select an unvisited point

2. Ifitis a core point > form a cluster
3. Expand the cluster by visiting reachable density points
4. Mark others as noise

Pros

e Finds clusters of arbitrary shape
e Handles noise and outliers
¢ No need to specify k
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Cons

e EPS and minPts selection is hard
e Not good for varying density clusters

5. Hierarchical Clustering

Builds a hierarchy (tree-like structure) of clusters.

Two Types
1. Agglomerative (bottom-up)

Start with each point as its own cluster — merge repeatedly.

2. Divisive (top-down)
Start with one cluster — repeatedly split.

Distance (Linkage) Methods

e Single linkage: min distance between points
e Complete linkage: max distance

e Average linkage: average distance

¢ Ward’s method: minimize variance

Output

A dendrogram that shows how clusters are merged/split.

Pros

e Noneed fork
e Good for small datasets

Cons

e Expensive for large datasets
e Hardtoundo a bad merge

6. Spectral Clustering

Spectral clustering uses eigenvalues of a similarity matrix to find clusters.

Steps

1. Construct similarity graph (S)

Example: S(1,j) = exp( - |[xi - xj|[*/ (26?) )
2. Compute graph Laplacian matrix:
3.L=D-35

where D = diagonal degree matrix

4. Compute top k eigenvectors of L
— forms a low-dimensional representation
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5. Apply K-means on these eigenvectors

Why Spectral Clustering?

e Works well for non-convex and complex cluster shapes
e Uses graphtheory to detect cluster structure

Pros

e Candetect complex shapes
e More accurate than K-means for tricky data

Cons

1. Needs eigen-decomposition
2. Expensive for large datasets

1. Expectation—-Maximization (EM) Algorithm

EM is an iterative optimization algorithm used when data has missing values, latent
variables, or hidden structure.

Goal

Maximize the likelihood function when direct computation is difficult.

Steps

EM alternates between two steps:

E-Step (Expectation)

Compute the expected value of hidden variables using current parameters.

Mathematically:

Q(6 | © 0ld) =E[ log L(® ; X, 2) | X, 6 old ]
Where:

X — observed data

Z — hidden variables

0 — model parameters
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M-Step (Maximization)

Maximize this expected log-likelihood to update parameters.

© new = argmax © Q(6 | 6 _old)
Repeat E-step and M-step until convergence.

Where Used

e (Gaussian Mixture Models
e Hidden Markov Models
e Missing data estimation

2. Gaussian Mixture Models (GMMs)

GMM represents data as a mixture of multiple Gaussian distributions.

Probability Model

p(x) = % ko k * N(x | u k, ¥ k)
Where:

n_k = mixing weight

1k = mean of k-th Gaussian

¥ k = covariance matrix

Goal
Estimate parameters {m_k, p k, X k}.

How GMM is Learned

Using Expectation-Maximization:

E-Step
Compute probability each point belongs to each cluster (responsibility):

v(z_ k) =1 k * N(x | pk, k) /% 3Jmoj*N(xI|pij = 3)
M-Step

Update parameters:

$ i v i(k)
(1/N k) 3
(1/N_k) 3
N k /N

Adva ntages

H Me =
NN AN

iy i
_iv i

e Soft clustering
e Handles complex-shaped clusters
e More flexible than K-means
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3. Learning Theory (Introduction)

Learning theory studies how algorithms learn, how well they generalize, and what
guarantees exist.

Key Concepts
Hypothesis Class (H)

Set of all possible models an algorithm can choose from.

Generalization

Performance on unseen data.

Overfitting

Good on training data, bad on test data.

VC Dimension

Measures capacity/complexity of a model.
Higher VC — high flexibility — risk of overfitting.

Bias—Variance Tradeoff

e High bias > underfitting
e Highvariance > overfitting

PAC Learning (Probably Approximately Correct)

A framework saying that learning is possible if:

1. Hypothesis class is not too large
2. Enough samples are available

4. Introduction to Reinforcement Learning (RL)

Reinforcement Learning is a learning framework where an agent learns by interacting with
an environment to maximize reward.

Key Components

e Agent: learner

e Environment: where agent acts

e State (s): current situation

e Action (a): choice made by agent

e Reward (r): feedback

e Policy (m): mapping from state > action

¢ Value Function (V or Q): expected future reward
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Goal

Maximize cumulative reward.

Types of RL Methods

e Model-free
o Q-learning
o SARSA
o Deep Q Networks (DQN)
e Model-based
o Learn transition probabilities

Exploration vs Exploitation

e Explore: try new actions
e Exploit: choose best-known action

5. Bayesian Networks (Bayes Nets)

Bayesian Networks are probabilistic graphical models that represent joint probability
distributions using a Directed Acyclic Graph (DAG).

Nodes

Random variables.

Edges

Dependencies / causal relationships.

Each node has a Conditional Probability Table (CPT):
P(X | Parents (X))
Joint Probability Distribution

Computed using:

P(X1, X2, ., Xn) =1 P(X i | Parents(X 1))
Advantages

e Represents uncertainty

e Supportsinference

e Explains causal structure

e Works with incomplete data

Applications

e Medical diagnosis
e Fraud detection

e Speech recognition
e Robotics
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