

10 MCQ – Final Exam Guess Questions

1. Pattern Recognition mainly deals with:

- A. Discovering hidden web links
- B. Classifying data into categories**
- C. Building hardware circuits
- D. Managing databases

2. Which of the following is a supervised learning method?

- A. K-Means
- B. DBSCAN
- C. K-Nearest Neighbor (KNN)**
- D. PCA

3. Bayes Decision Theory is used to:

- A. Reduce dimensionality
- B. Make optimal classification decisions**
- C. Perform clustering
- D. Remove noise from data

4. PCA works by:

- A. Maximizing entropy
- B. Reducing variance
- C. Maximizing variance in new components**
- D. Grouping similar clusters

5. SVM tries to find:

- A. Minimum spanning tree
- B. Largest margin hyperplane**
- C. Smallest cluster radius
- D. Posterior probability

6. Naïve Bayes assumes:

- A. Features are highly correlated
- B. Features are independent**
- C. No need for prior probability
- D. Non-linear kernels

7. DBSCAN is best suited for:

- A. Spherical clusters only
- B. Density-based clustering**
- C. Reducing feature dimensions
- D. Linearly separable data

8. Which technique is used for dimensionality reduction?

- A. KNN
- B. PCA**
- C. DBSCAN
- D. HMM

9. Autoencoders are mainly used for:

- A. Clustering
- B. Feature learning and reconstruction**
- C. Decision tree generation
- D. Bayes classification

10. HMM is widely used in:

- A. Static image recognition
- B. Sequential pattern recognition**
- C. Database normalization
- D. Feature scaling

10 Short Questions and Answers

1. What is Pattern Recognition?

Answer:

Pattern Recognition is the process of automatically identifying patterns and regularities in data using algorithms and mathematical models.

2. What is the difference between supervised and unsupervised learning?

Answer:

- **Supervised** → Uses labeled data for training
- **Unsupervised** → Uses unlabeled data to find patterns/clusters

3. What is Bayes Decision Theory?

Answer:

A probabilistic framework that minimizes classification error using prior probability and likelihood functions.

4. Define PCA.

Answer:

Principal Component Analysis (PCA) is a dimensionality reduction technique that transforms correlated variables into a smaller set of uncorrelated variables called principal components.

5. What is KNN classifier?

Answer:

K-Nearest Neighbors classifies a sample based on the majority label among its k nearest data points using distance metrics.

6. What is a decision boundary?

Answer:

A surface that separates different classes in a feature space.

7. What is a kernel in SVM?**Answer:**

A kernel is a function that transforms input data into a higher-dimensional space to make it linearly separable.

8. What is clustering?**Answer:**

An unsupervised learning technique that groups similar data points together based on similarity or distance.

9. What are Autoencoders used for?**Answer:**

Autoencoders are neural networks used for dimensionality reduction, data compression, and denoising.

10. What is a Hidden Markov Model (HMM)?**Answer:**

A statistical model for sequential data where the system is modeled using hidden states and observable outputs.

10 Long Questions (with Detailed Answers)

1. Explain the components of a Pattern Recognition system.

Answer:

A complete Pattern Recognition system includes:

1. **Data acquisition** – Collecting raw data (image, voice, text).
2. **Preprocessing** – Noise removal, normalization, scaling.
3. **Feature extraction** – Converting raw data into meaningful features.
4. **Feature selection** – Choosing the most relevant features.
5. **Classification / Clustering** – Assigning class labels using algorithms like SVM, KNN, Naive Bayes.
6. **Post-processing** – Smoothing results, combining decisions.
7. **Performance evaluation** – Using accuracy, precision, recall, F1-score, ROC.

2. Explain Bayes Decision Theory with an example.

Answer:

Bayes Decision Theory uses probabilities to classify data.

For a sample x , assign it to class ω_i if:

$$P(\omega_i | x) > P(\omega_j | x)$$

Using Bayes theorem:

$$P(\omega_i | x) = \frac{P(x | \omega_i)P(\omega_i)}{P(x)}$$

Example:

If a feature vector belongs to two classes:

- Class A probability = 0.6
- Class B probability = 0.4

Then the system chooses Class A.

It minimizes the classifier error.

3. What is PCA? Describe its steps.

Answer:

PCA reduces dimensionality while retaining maximum variance.

Steps:

1. Standardize the data
2. Compute covariance matrix
3. Compute eigenvalues & eigenvectors
4. Sort eigenvectors based on eigenvalues
5. Select top k principal components
6. Transform data into new subspace

Used for image compression, face recognition, preprocessing for ML.

4. Compare PCA and LDA.

Answer:

PCA	LDA
Unsupervised	Supervised
Maximizes variance	Maximizes class separability
Works without labels	Needs labeled data
Reduces noise	Enhances class discrimination

5. Explain SVM with diagram and kernel trick.

Answer:

- SVM finds the **maximum margin hyperplane** between classes.
- Support vectors are the closest data points to the hyperplane.

- If data is not linearly separable, the **kernel trick** maps data to higher dimensions.

Common kernels: RBF, Polynomial, Sigmoid.

Used for image classification, bioinformatics, text classification.

6. Explain neural network architecture: MLP and CNN.

Answer:

MLP (Multilayer Perceptron):

- Input layer → Hidden layers → Output layer
- Fully connected
- Uses activation functions (ReLU, Sigmoid)

CNN (Convolutional Neural Network):

- Convolution layers extract features
- Pooling reduces dimensions
- Fully connected classification layers
- Best for images
- Detects patterns like edges, textures, shapes

7. Explain K-Means clustering algorithm.

Answer:

Step-by-step:

1. Choose number of clusters k
2. Initialize centroids randomly
3. Assign each point to nearest centroid
4. Update centroid based on mean of assigned points
5. Repeat steps 3–4 until centroids stabilize

Advantages:

- Simple and fast

Disadvantages:

- Requires k
- Sensitive to outliers
- Works poorly with non-spherical clusters

8. Describe the EM algorithm and its role in GMM.

Answer:

EM (Expectation-Maximization) improves parameter estimates iteratively.

Steps:

1. **E-Step:** Compute expected membership probabilities
2. **M-Step:** Update parameters (mean, covariance, weight)

Used in **Gaussian Mixture Models** for clustering overlapping clusters.

9. How is Pattern Recognition used in Image Processing and NLP?

Answer:

Image Processing:

- Object detection (YOLO, Faster-RCNN)
- Face recognition
- Medical imaging
- Scene understanding

NLP:

- Sentiment analysis
- Text classification
- Named entity recognition
- Speech-to-text

Both fields rely heavily on CNNs, RNNs, Transformers.

10. Discuss ethical issues in Pattern Recognition.

Answer:

1. **Bias:** ML models may discriminate based on race, gender.
2. **Privacy:** Facial recognition systems may track people without consent.
3. **Security:** Data breaches can leak biometric data.
4. **Transparency:** Black-box deep learning models lack explainability.
5. **Misuse:** Surveillance and profiling can be used maliciously.